All matter is made of particles; these can be single atoms or atoms chemically joined to make molecules. Using this fact, matter can be classified into three broad groups: elements, compounds and mixtures. In an element, all the atoms are of the same type. If more than one type of atom is chemically joined, then a compound has been formed. If more than one type of atom or molecule is contained in the same substance, and the particles aren't chemically joined, this is a mixture.
Explanation :
Speed of car, 
Kinetic energy of the car, 
Speed of car, 
Let
is the kinetic energy of the car when it is moving with 100 km/h.




Initial velocity of both cars are 0. Using third equation of motion :
So,
and 
t is same. So,



So, the braking distance at the faster speed is twice the braking distance at the slower speed.
<span>A, B, and C are correct descriptions.
Choice-D does NOT accurately describe the forces
that exist within an atom.
Choice-D should say:
"Electrons positioned closer to the nucleus have a greater
attraction to the protons and are LESS likely to be discharged
from the atom than electrons farther away are."</span>
Answer:
L = 0.475 m = 475 mm = 18.7 inches
Explanation:
A cylindrical specimen of a nickel alloy having an elastic modulus of 207 GPa and an original diameter of 10.2 mm (0.40 in.) will experience only elastic deformation when a tensile load of 8900 N (2000 lb ) is applied. Compute the maximum length of the specimen before deformation if the maximum allowable elongation is 0.25 mm (0.010 in).
E = 207 GPa = 207*10⁹ Pa
D = 10.2 mm = 0.0102 m
P = 8900 N
ΔL = 0.25 mm = 2.5*10⁻⁴ m
L = ?
We can use the Equation of the Hooke's Law
ΔL = P*L / (A*E) ⇒ L = ΔL*A*E / P
⇒ L = (2.5*10⁻⁴ m)*(π*(0.0102 m)²*0.25)*(207*10⁹ Pa) / (8900 N)
⇒ L = 0.475 m = 475 mm = 18.7 inches
Answer:
15000 m/s
Explanation:
You just need to multiply the wavelength with the frequency.