Iron nail. the rest of those are not iron or some form of magnetic material.
Answer:
The vehicle with the most mass
Explanation:
Momentum is the quantity of motion in a body and it is dependent on its mass and velocity.
Momentum = m x v
m is the mass
v is the velocity
Now,
Both mass and velocity are directly proportional to momentum. Since the two bodies moves with the same velocity, the vehicle with the most mass will have the greatest momentum
Answer:
t = 2.13 s
Explanation:
given,
height of the building = 22.3 m
horizontal distance = 127 m
acceleration due to gravity = 9.8 m/s²
time for which ball is in motion = ?
using equation of motion

initial velocity is zero



t = √4.551
t = 2.13 s
Answer:
The strength of magnetic field is 0.2 Tesla.
Explanation:
Data from the question is
Length (L) of wire ; L=0.10 m
Current in wire ; I= 2.0 A
Force on wire ; F = 0.04 N
Angle = Right angle So, 

Now ,
We have to find the magnetic Field strength (B)
For this formula for Force on wire in magnetic field is

Further modified as

Now insert values in the formula


So, the strength of magnetic field is 0.2 Tesla.
Answer:
v = 7.67 m/s for L= 1m
Explanation:
Let's use the conservation of mechanical energy, at the highest point and the lowest point
Initial. Vertical ruler
Em₀ = mg h
Final. Just before touching the floor
= K = ½ I w²
Em₀ = 
m g h = ½ I w²
The moment of inertia of a ruler that turns on one end is
I = 1/3 m L²
Let's replace
m g h = ½ (1/3 m L²) w²2
g h = 1/6 L² w²
They ask for the speed of the end so the height h is equal to the length of the ruler
g L = 1/6 L² w²
The linear and angular variables are related
v = w r
w = v / r
In this case the point of interest a in strangers r = L
g L = 1/6 L² v² / L²
v = √ 6 g L
Let's calculate
Assume that the length of the meter is L = 1 m
v = √ (6 9.8 1)
v = 7.67 m/s