1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aalyn [17]
3 years ago
9

Find the diagonal BD simplify you answer (Explain)

Mathematics
1 answer:
Dima020 [189]3 years ago
5 0

Answer:

See below:

Step-by-step explanation:

First of all, you will see that diagonal BD is a angle bisector for Angles <ABC and <ADC. Now, knowing that it is a square.

We see that the angle bisector splits the angles into 45 degrees each due to the sum of angles in a square being 360 degrees hence giving us 4 right angles.

Now, if we see this, we see that we have a 45 45 90 Triangle!

The theorem states that the hypotenuse is equal to x\sqrt{2}.

Hence, we get our answer of 5\sqrt{2}!

You might be interested in
What is 9 3/4 as a percent?
masya89 [10]

Answer:

9 3/4 = 975%

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
Sam raked 8 bags of leaves in 16 minutes. If he continues to work at the same rate, how long will it take him to rake five bags?
Vlad1618 [11]

Answer:

10 minutes

Step-by-step explanation:

You do 16 divide 8 which gives you 2. It takes 2 minutes for 1 bag. You then multiple 2 times 5 which gives you 10.

3 0
3 years ago
Help please?<br> Thank youu
melomori [17]
The 3rd choice is the right answer here
Hope this helps :)
Have a wonderful day !
3 0
4 years ago
How do you use a abacus in a simple way?
Allushta [10]
Each column is a digit, and the top two beads each represent 5 and the bottom 5 beads each represent 1. To read it, you add up the values of the "top" beads that are dropped down and the "bottom" beads that are raised up, and you read the number left to right.
7 0
3 years ago
I honestly need help with these
Brilliant_brown [7]

9. The curve passes through the point (-1, -3), which means

-3 = a(-1) + \dfrac b{-1} \implies a + b = 3

Compute the derivative.

y = ax + \dfrac bx \implies \dfrac{dy}{dx} = a - \dfrac b{x^2}

At the given point, the gradient is -7 so that

-7 = a - \dfrac b{(-1)^2} \implies a-b = -7

Eliminating b, we find

(a+b) + (a-b) = 3+(-7) \implies 2a = -4 \implies \boxed{a=-2}

Solve for b.

a+b=3 \implies b=3-a \implies \boxed{b = 5}

10. Compute the derivative.

y = \dfrac{x^3}3 - \dfrac{5x^2}2 + 6x - 1 \implies \dfrac{dy}{dx} = x^2 - 5x + 6

Solve for x when the gradient is 2.

x^2 - 5x + 6 = 2

x^2 - 5x + 4 = 0

(x - 1) (x - 4) = 0

\implies x=1 \text{ or } x=4

Evaluate y at each of these.

\boxed{x=1} \implies y = \dfrac{1^3}3 - \dfrac{5\cdot1^2}2 + 6\cdot1 - 1 = \boxed{y = \dfrac{17}6}

\boxed{x = 4} \implies y = \dfrac{4^3}3 - \dfrac{5\cdot4^2}2 + 6\cdot4 - 1 \implies \boxed{y = \dfrac{13}3}

11. a. Solve for x where both curves meet.

\dfrac{x^3}3 - 2x^2 - 8x + 5 = x + 5

\dfrac{x^3}3 - 2x^2 - 9x = 0

\dfrac x3 (x^2 - 6x - 27) = 0

\dfrac x3 (x - 9) (x + 3) = 0

\implies x = 0 \text{ or }x = 9 \text{ or } x = -3

Evaluate y at each of these.

A:~~~~ \boxed{x=0} \implies y=0+5 \implies \boxed{y=5}

B:~~~~ \boxed{x=9} \implies y=9+5 \implies \boxed{y=14}

C:~~~~ \boxed{x=-3} \implies y=-3+5 \implies \boxed{y=2}

11. b. Compute the derivative for the curve.

y = \dfrac{x^3}3 - 2x^2 - 8x + 5 \implies \dfrac{dy}{dx} = x^2 - 4x - 8

Evaluate the derivative at the x-coordinates of A, B, and C.

A: ~~~~ x=0 \implies \dfrac{dy}{dx} = 0^2-4\cdot0-8 \implies \boxed{\dfrac{dy}{dx} = -8}

B:~~~~ x=9 \implies \dfrac{dy}{dx} = 9^2-4\cdot9-8 \implies \boxed{\dfrac{dy}{dx} = 37}

C:~~~~ x=-3 \implies \dfrac{dy}{dx} = (-3)^2-4\cdot(-3)-8 \implies \boxed{\dfrac{dy}{dx} = 13}

12. a. Compute the derivative.

y = 4x^3 + 3x^2 - 6x - 1 \implies \boxed{\dfrac{dy}{dx} = 12x^2 + 6x - 6}

12. b. By completing the square, we have

12x^2 + 6x - 6 = 12 \left(x^2 + \dfrac x2\right) - 6 \\\\ ~~~~~~~~ = 12 \left(x^2 + \dfrac x2 + \dfrac1{4^2}\right) - 6 - \dfrac{12}{4^2} \\\\ ~~~~~~~~ = 12 \left(x + \dfrac14\right)^2 - \dfrac{27}4

so that

\dfrac{dy}{dx} = 12 \left(x + \dfrac14\right)^2 - \dfrac{27}4 \ge 0 \\\\ ~~~~ \implies 12 \left(x + \dfrac14\right)^2 \ge \dfrac{27}4 \\\\ ~~~~ \implies \left(x + \dfrac14\right)^2 \ge \dfrac{27}{48} = \dfrac9{16} \\\\ ~~~~ \implies \left|x + \dfrac14\right| \ge \sqrt{\dfrac9{16}} = \dfrac34 \\\\ ~~~~ \implies x+\dfrac14 \ge \dfrac34 \text{ or } -\left(x+\dfrac14\right) \ge \dfrac34 \\\\ ~~~~ \implies \boxed{x \ge \dfrac12 \text{ or } x \le -1}

13. a. Compute the derivative.

y = x^3 + x^2 - 16x - 16 \implies \boxed{\dfrac{dy}{dx} = 3x^2 - 2x - 16}

13. b. Complete the square.

3x^2 - 2x - 16 = 3 \left(x^2 - \dfrac{2x}3\right) - 16 \\\\ ~~~~~~~~ = 3 \left(x^2 - \dfrac{2x}3 + \dfrac1{3^2}\right) - 16 - \dfrac13 \\\\ ~~~~~~~~ = 3 \left(x - \dfrac13\right)^2 - \dfrac{49}3

Then

\dfrac{dy}{dx} = 3 \left(x - \dfrac13\right)^2 - \dfrac{49}3 \le 0 \\\\ ~~~~ \implies 3 \left(x - \dfrac13\right)^2 \le \dfrac{49}3 \\\\ ~~~~ \implies \left(x - \dfrac13\right)^2 \le \dfrac{49}9 \\\\ ~~~~ \implies \left|x - \dfrac13\right| \le \sqrt{\dfrac{49}9} = \dfrac73 \\\\ ~~~~ \implies x - \dfrac13 \le \dfrac73 \text{ or } -\left(x-\dfrac13\right) \le \dfrac73 \\\\ ~~~~ \implies \boxed{x \le 2 \text{ or } x \ge \dfrac83}

5 0
2 years ago
Other questions:
  • Eric wants to purchase a new car. Why is important to Eric to establish a positive credit history?
    8·1 answer
  • Use the substitution method to solve the following system of equations:
    5·2 answers
  • Parallel lines are cut by a transversal such that the alternate interior angles have measures of 3x + 17 and x + 53 degrees. The
    6·2 answers
  • Where would an imaginary line need to be drawn to reflect across an axis of symmetry so that a regular pentagon can carry onto i
    7·1 answer
  • What is a tangent line
    8·1 answer
  • Can somebody please find the missing measure.
    9·2 answers
  • Helppppppppppppppppppppppppppp meeeeeeeeeee find the area
    15·2 answers
  • Help please with this lol.
    11·2 answers
  • What is the value of the expression (3a-b)/(6(b+a)) when a = 5 and b = -3? Show your work to support your answer
    14·2 answers
  • Please help my whole math grade depends on thha
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!