1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
GuDViN [60]
3 years ago
10

Determine whether the following figures are similar.

Mathematics
1 answer:
kolbaska11 [484]3 years ago
8 0

Answer:

Step-by-step explanation:

You might be interested in
Which of the following units can be used to express volume? m m3 m2
Illusion [34]
M3- meter cube  express the volume
7 0
4 years ago
The roots of 2x^2-3x=4 are a and b. Find the simplest quadratic equation which has roots 1/a and 1/b
Tju [1.3M]
Find the roots

solve
we use hmm, completing the suare
2(x²-1.5x)=4
divide both sides by 2
x²-1.5x=2
take 1/2 of linear coeiftn and square it
-1.5/2=-0.75, (-0.75)²=0.5625
add that to both sides
x²-1.5x+0.5625=2+0.5625
factor perfect squaer trinomial
(x-0.75)²=2.5625
square root both sides, remember to take positive and negative square roots
x-0.75=+/-√2.5625
add 0.75 to both sides
x=0.75+/-√2.5625

the roots are x=0.75+√2.5625 and x=0.75-√2.5625

1/a and 1/b
1/(0.75+√2.5625) and 1/(0.75-√2.5625)

if the roots of a quadratic equation are r1 and r2 then it factors to
(x-r1)(x-r2)
so then we can factor our equation to be
(x-\frac{1}{0.75+\sqrt{2.5625}})(x-\frac{1}{0.75-\sqrt{2.5625}})

if we were to try and expand it, we would get
x²+0.75x-0.5
that's the simpliest equation with roots 1/a and 1/b where a and b are he roots of 2x²-3x=4


x²+0.75x-0.5 is answer
8 0
4 years ago
A man does not eat for. One week how many hours is that
Artist 52 [7]

Answer:

1 week = 168 hours

Step-by-step explanation:

1 week = 7 days

1 day = 24 hours

1 week * 7 days/ 1 week * 24 hours/1 day = 168 hours

So 1 week = 168 hours

8 0
3 years ago
Read 2 more answers
If <img src="https://tex.z-dn.net/?f=%5Cmathrm%20%7By%20%3D%20%28x%20%2B%20%5Csqrt%7B1%2Bx%5E%7B2%7D%7D%29%5E%7Bm%7D%7D" id="Tex
Harman [31]

Answer:

See below for proof.

Step-by-step explanation:

<u>Given</u>:

y=\left(x+\sqrt{1+x^2}\right)^m

<u>First derivative</u>

\boxed{\begin{minipage}{5.4 cm}\underline{Chain Rule for Differentiation}\\\\If  $f(g(x))$ then:\\\\$\dfrac{\text{d}y}{\text{d}x}=f'(g(x))\:g'(x)$\\\end{minipage}}

<u />

<u />\boxed{\begin{minipage}{5 cm}\underline{Differentiating $x^n$}\\\\If  $y=x^n$, then $\dfrac{\text{d}y}{\text{d}x}=xn^{n-1}$\\\end{minipage}}

<u />

\begin{aligned} y_1=\dfrac{\text{d}y}{\text{d}x} & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(1+\dfrac{2x}{2\sqrt{1+x^2}} \right)\\\\ & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(1+\dfrac{x}{\sqrt{1+x^2}} \right) \\\\ & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(\dfrac{x+\sqrt{1+x^2}}{\sqrt{1+x^2}} \right)\\\\ & = \dfrac{m}{\sqrt{1+x^2}} \cdot \left(x+\sqrt{1+x^2}\right)^{m-1}  \cdot \left(x+\sqrt{1+x^2}\right)\\\\ & = \dfrac{m}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m\end{aligned}

<u>Second derivative</u>

<u />

\boxed{\begin{minipage}{5.5 cm}\underline{Product Rule for Differentiation}\\\\If  $y=uv$  then:\\\\$\dfrac{\text{d}y}{\text{d}x}=u\dfrac{\text{d}v}{\text{d}x}+v\dfrac{\text{d}u}{\text{d}x}$\\\end{minipage}}

\textsf{Let }u=\dfrac{m}{\sqrt{1+x^2}}

\implies \dfrac{\text{d}u}{\text{d}x}=-\dfrac{mx}{\left(1+x^2\right)^\frac{3}{2}}

\textsf{Let }v=\left(x+\sqrt{1+x^2}\right)^m

\implies \dfrac{\text{d}v}{\text{d}x}=\dfrac{m}{\sqrt{1+x^2}} \cdot \left(x+\sqrt{1+x^2}\right)^m

\begin{aligned}y_2=\dfrac{\text{d}^2y}{\text{d}x^2}&=\dfrac{m}{\sqrt{1+x^2}}\cdot\dfrac{m}{\sqrt{1+x^2}}\cdot\left(x+\sqrt{1+x^2}\right)^m+\left(x+\sqrt{1+x^2}\right)^m\cdot-\dfrac{mx}{\left(1+x^2\right)^\frac{3}{2}}\\\\&=\dfrac{m^2}{1+x^2}\cdot\left(x+\sqrt{1+x^2}\right)^m+\left(x+\sqrt{1+x^2}\right)^m\cdot-\dfrac{mx}{\left(1+x^2\right)\sqrt{1+x^2}}\\\\ &=\left(x+\sqrt{1+x^2}\right)^m\left(\dfrac{m^2}{1+x^2}-\dfrac{mx}{\left(1+x^2\right)\sqrt{1+x^2}}\right)\\\\\end{aligned}

              = \dfrac{\left(x+\sqrt{1+x^2}\right)^m}{1+x^2}\right)\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)

<u>Proof</u>

  (x^2+1)y_2+xy_1-m^2y

= (x^2+1) \dfrac{\left(x+\sqrt{1+x^2}\right)^m}{1+x^2}\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)+\dfrac{mx}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m-m^2\left(x+\sqrt{1+x^2\right)^m

= \left(x+\sqrt{1+x^2}\right)^m\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)+\dfrac{mx}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m-m^2\left(x+\sqrt{1+x^2\right)^m

= \left(x+\sqrt{1+x^2}\right)^m\left[m^2-\dfrac{mx}{\sqrt{1+x^2}}+\dfrac{mx}{\sqrt{1+x^2}}-m^2\right]

= \left(x+\sqrt{1+x^2}\right)^m\left[0]

= 0

8 0
2 years ago
3. In the figure, c || d. What are the measures<br> of 1 and 2
dem82 [27]

Answer:

1: 105 degrees

2: 75 degrees

Step-by-step explanation:

2 is a corresponding angle with 75.

1 is supplementary so  x+75 = 180

x=105

5 0
3 years ago
Other questions:
  • Can anyone please help me?
    15·1 answer
  • Gershona is babysitting her brothers. To keep them occupied, she lets them put stickers into sticker books. Joshua puts 110 stic
    5·2 answers
  • I need help please quick. Is 69 is answer?
    7·2 answers
  • A candle manufacturer sells cylindrical candles in sets of three. Each candle in the set is a different size. The smallest candl
    6·2 answers
  • What is x in equation 1-2x=21
    15·1 answer
  • Point B is on line segment AC. Given AB 3x, BC = 4x + 8, and
    5·1 answer
  • What is the slope-intercept equation for the line below?y-intercept=(0, 5) slope=1/2
    5·1 answer
  • Someone please help asap!!! How do I know where to shade at?
    12·1 answer
  • The owner of a small business buys coats for $60 each. He sells the coat for $72.00 each. What percent of the purchase price is
    14·2 answers
  • 100 points and brainliest
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!