Answer:
Explanation:
the nymph looks like a smaller version of the adult insect, & it also has no wings & molts.
Filling out the table below following the outlined order:
- Calcium - symbol = Ca; Group =2; Period = 4; Ar = 134; Am =40.078u; Ph = solid; Density = 1.55; Bp = 1757K; Mp = 1115K.
- Vanadium - symbol = V; Group =5; Period = 4; Ar = 197; Am =50.9415u; Ph = solid; Density = 6.11; Bp = 3680K; Mp = 2183K.
- Manganese - symbol = Mn; Group =7; Period = 4; Ar = 127; Am = 54.938044u; Ph = solid; Density = 7.21; Bp = 2334K; Mp = 1519K.
- Cobalt: - symbol = Co; Group =9; Period = 4; Ar = 125; Am =58.933195 u; Ph = solid; Density = 8.90; Bp = 3200K; Mp = 1768K.
- Zinc: - symbol = Zn; Group = 12; Period = 4; Ar = 134; Am =65.38 u; Ph = solid; Density = 7.14; Bp = 1180K; Mp = 692.68K.
- Arsenic: - symbol = As; Group = 15; Period = 4; Ar = 197; Am = 74.9216 u; Ph = solid; Density = 5.75; Bp = 889K; Mp = 889K.
- Bromine: - symbol = Br; Group =17; Period = 4; Ar = 120; Am = 79.904 u; Ph = Liquid; Density = 3.1028; Bp = 332K; Mp = 265K.
<h3>Meaning of Element</h3>
An element can be defined as a substance that can not be broken down into simpler substances.
An element serves as a building blocks for compounds and mixtures.
In conclusion, each element and its property as requested in the table are given above.
Learn more about element : brainly.com/question/18096867
#SPJ1
CO2 and H2O react to form H2CO3 and two bonds are broken each in CO and H2O to form H2CO3.
<h3>What is chemical bonding?</h3>
Chemical bonding refers to the forces of attraction which hold atoms of the same or different elements together in order to form stable compounds or molecules .
Chemical bonding may be either ionic or covalent.
The greater the number of bonds in a compound, the more stable the compound.
During chemical reactions, bonds are broken and new binds are formed.
There are two bonds each in CO2 and H2O.
This, in the reaction between CO2 and H2O react to form H2CO3, , the number of bonds broken in H2O is two and in CO2 is two.
Learn more about chemical bonding at: brainly.com/question/819068
Answer:
The pH of the solution will be 7.53.
Explanation:
Dissociation constant of KClO=
Concentration of acid in 1 l= 0.30 M
Then in 200 ml = 
The concentration of acid, HClO=[acid]= 0.006 M
Concentration of salt in 1 L = 0.20 M
Then in 300 ml = 
The concentration of acid, KClO=[salt]= 0.006 M
The pH of the solution will be given by formula :
![pH=pK_{a}^o+\log\frac{[salt]}{[acid]}](https://tex.z-dn.net/?f=pH%3DpK_%7Ba%7D%5Eo%2B%5Clog%5Cfrac%7B%5Bsalt%5D%7D%7B%5Bacid%5D%7D)
![pH=-\log[2.8\times 10^{-8}]+\frac{[0.06 M]}{[0.06 M]}](https://tex.z-dn.net/?f=pH%3D-%5Clog%5B2.8%5Ctimes%2010%5E%7B-8%7D%5D%2B%5Cfrac%7B%5B0.06%20M%5D%7D%7B%5B0.06%20M%5D%7D)
The pH of the solution will be 7.53.
Answer:
When ΔS > ΔH/ T, then the reaction will proceed forward
Explanation:
- The entity that determines the whether a reaction will occur on its own in the forward direction (Spontaneity or Feasibility) is Gibb's free energy.
- Gibb's free energy is the energy available to do work. It is denoted as 'G'. It cannot be easily measured. The change (ΔG) can only be measured. ΔG = ΔH - TΔS
when ΔG is positive, The reaction is not spontaneous (reaction will not occur on its own)
When ΔG is negative, The reaction is spontaneous (reaction will occur on its own)
When ΔG is zero, the reaction is in equilibrium
Option A and E are not correct. ΔH (Enthalpy) cannot determine spontaneity
Option C and D cannot alone determine spontaneity of reaction
For reaction to be spontaneous, TΔS > ΔH
Therefore, ΔS > ΔH/T