Let us take 'a' in the place of 'y' so the equation becomes
(y+x) (ax+b)
Step-by-step explanation:
<u>Step 1:</u>
(a + x) (ax + b)
<u>Step 2: Proof</u>
Checking polynomial identity.
(ax+b )(x+a) = FOIL
(ax+b)(x+a)
ax^2+a^2x is the First Term in the FOIL
ax^2 + a^2x + bx + ab
(ax+b)(x+a)+bx+ab is the Second Term in the FOIL
Add both expressions together from First and Second Term
= ax^2 + a^2x + bx + ab
<u>Step 3: Proof
</u>
(ax+b)(x+a) = ax^2 + a^2x + bx + ab
Identity is Found
.
Trying with numbers now
(ax+b)(x+a) = ax^2 + a^2x + bx + ab
((2*5)+8)(5+2) =(2*5^2)+(2^2*5)+(8*5)+(2*8)
((10)+8)(7) =(2*25)+(4*5)+(40)+(16)
(18)(7) =(50)+(20)+(56)
126 =126
Umm u are cute what is your number
Answer:
yes
Step-by-step explanation:
yes yes yes yes yes yes yes yes yes yes yes
Answer:
length = x - 2
Step-by-step explanation:
Area (A) of rectangle = lw ( l is the length and w the width )
A = x² - 7x + 10 = (x - 2)(x - 5) ← in factored form
l =
= 
cancel the factor (x - 5) on the numerator/ denominator, hence
l = x - 2