1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bekas [8.4K]
2 years ago
11

Given the diagram below, what is cos(45")? 45° 6 A. √2 B. 6/√2 C. 1/√2 D. 3√2

Mathematics
1 answer:
Gnesinka [82]2 years ago
3 0
C. 1/root2

Based on the information, the hypotenuse will be 6root2 because it is a 45, 45, 90 triangle. The two legs will be 6. Using SOH CAH TOA, we know that for cosine, it will be adjacent/hypotenuse. The adjacent side is 6 and the hypotenuse is 6root2. The result will be (6)/(6root2). After simplifying, we get
1/root2.
You might be interested in
If f(x) = 2x-12, evaluate -2f(3) <br><br> PLEASE HELP!!!!!!
mel-nik [20]
I think that’s it f(x)=2x−12
6 0
2 years ago
Read 2 more answers
Third-degree, with zeros of −3 , − 2 , and 1 , and passes through the point ( 3 , 11 ) .
Masja [62]

Answer:

y  =   ( x + 3 ) *  ( x +  2 ) * ( x - 1 )* 11/60

Step-by-step explanation:

Lets   y  =  f(x)   in a cartesian coordinates

Having three zeros:

x = -3       ⇒   x  = -2      ⇒   and   x = 1  

That meas that if   x  takes the above mentioned  values " y " must be zero

therefore  y  must be of the form

f (x)  =  y  =  ( x + 3 ) *  ( x +  2 ) * ( x - 1 )     (1)

In that case for y to be zero one of the factors should be zero or

y  =  0        x  + 3 = 0    and  x = - 3  is a zero of the function y .

The same reasoning applies for the other two roots

Now we have to evaluate the other condition.

According to problem statement the function passes through the point ( 3, 11 ) , that means that when x =  3 ,  y have to be 11, therefore we plug in equation (1)  that value to see what happens

y  =   ( x + 3 ) *  ( x +  2 ) * ( x - 1 )

11  =  ( 3 + 3 ) * ( 3 + 2 ) + ( 3 - 1)   =  6*5*2  = 60

Then we adjust the expression (1) to meet the condition of the function passing through point  ( 3 , 11) as:

y  =  ( 3 + 3 ) * ( 3 + 2 ) + ( 3 - 1) * 11/60    (2)

and check to see if we did right

for y to be zero      x   can be    x = - 3    x  =  -2   and  x = 1 in all these cases y = 0.  And if  x  =  3   in equation (2)  y = 11. And that what we want to shown. Then the solution is:

y  =   ( x + 3 ) *  ( x +  2 ) * ( x - 1 )* 11/60

8 0
3 years ago
Solve the system of equations by row-reduction. At each step, show clearly the symbol of the linear combinations that allow you
adell [148]

Answer:

1) The solution of the system is

\left\begin{array}{ccc}x_1&=&5\\x_2&=&8\\x_3&=&-13\end{array}\right

2) The solution of the system is

\left\begin{array}{ccc}x_1&=&2\\x_2&=&-7\\x_3&=&-1\end{array}\right

Step-by-step explanation:

1) To solve the system of equations

\left\begin{array}{ccccccc}&3x_2&-5x_3&=&89\\6x_1&&+x_3&=&17\\x_1&-x_2&+8x_3&=&-107\end{array}\right

using the row reduction method you must:

Step 1: Write the augmented matrix of the system

\left[ \begin{array}{ccc|c} 0 & 3 & -5 & 89 \\\\ 6 & 0 & 1 & 17 \\\\ 1 & -1 & 8 & -107 \end{array} \right]

Step 2: Swap rows 1 and 2

\left[ \begin{array}{ccc|c} 6 & 0 & 1 & 17 \\\\ 0 & 3 & -5 & 89 \\\\ 1 & -1 & 8 & -107 \end{array} \right]

Step 3:  \left(R_1=\frac{R_1}{6}\right)

\left[ \begin{array}{ccc|c} 1 & 0 & \frac{1}{6} & \frac{17}{6} \\\\ 0 & 3 & -5 & 89 \\\\ 1 & -1 & 8 & -107 \end{array} \right]

Step 4: \left(R_3=R_3-R_1\right)

\left[ \begin{array}{ccc|c} 1 & 0 & \frac{1}{6} & \frac{17}{6} \\\\ 0 & 3 & -5 & 89 \\\\ 0 & -1 & \frac{47}{6} & - \frac{659}{6} \end{array} \right]

Step 5: \left(R_2=\frac{R_2}{3}\right)

\left[ \begin{array}{ccc|c} 1 & 0 & \frac{1}{6} & \frac{17}{6} \\\\ 0 & 1 & - \frac{5}{3} & \frac{89}{3} \\\\ 0 & -1 & \frac{47}{6} & - \frac{659}{6} \end{array} \right]

Step 6: \left(R_3=R_3+R_2\right)

\left[ \begin{array}{ccc|c} 1 & 0 & \frac{1}{6} & \frac{17}{6} \\\\ 0 & 1 & - \frac{5}{3} & \frac{89}{3} \\\\ 0 & 0 & \frac{37}{6} & - \frac{481}{6} \end{array} \right]

Step 7: \left(R_3=\left(\frac{6}{37}\right)R_3\right)

\left[ \begin{array}{ccc|c} 1 & 0 & \frac{1}{6} & \frac{17}{6} \\\\ 0 & 1 & - \frac{5}{3} & \frac{89}{3} \\\\ 0 & 0 & 1 & -13 \end{array} \right]

Step 8: \left(R_1=R_1-\left(\frac{1}{6}\right)R_3\right)

\left[ \begin{array}{ccc|c} 1 & 0 & 0 & 5 \\\\ 0 & 1 & - \frac{5}{3} & \frac{89}{3} \\\\ 0 & 0 & 1 & -13 \end{array} \right]

Step 9: \left(R_2=R_2+\left(\frac{5}{3}\right)R_3\right)

\left[ \begin{array}{ccc|c} 1 & 0 & 0 & 5 \\\\ 0 & 1 & 0 & 8 \\\\ 0 & 0 & 1 & -13 \end{array} \right]

Step 10: Rewrite the system using the row reduced matrix:

\left[ \begin{array}{ccc|c} 1 & 0 & 0 & 5 \\\\ 0 & 1 & 0 & 8 \\\\ 0 & 0 & 1 & -13 \end{array} \right] \rightarrow \left\begin{array}{ccc}x_1&=&5\\x_2&=&8\\x_3&=&-13\end{array}\right

2) To solve the system of equations

\left\begin{array}{ccccccc}4x_1&-x_2&+3x_3&=&12\\2x_1&&+9x_3&=&-5\\x_1&+4x_2&+6x_3&=&-32\end{array}\right

using the row reduction method you must:

Step 1:

\left[ \begin{array}{ccc|c} 4 & -1 & 3 & 12 \\\\ 2 & 0 & 9 & -5 \\\\ 1 & 4 & 6 & -32 \end{array} \right]

Step 2: \left(R_1=\frac{R_1}{4}\right)

\left[ \begin{array}{ccc|c} 1 & - \frac{1}{4} & \frac{3}{4} & 3 \\\\ 2 & 0 & 9 & -5 \\\\ 1 & 4 & 6 & -32 \end{array} \right]

Step 3: \left(R_2=R_2-\left(2\right)R_1\right)

\left[ \begin{array}{ccc|c} 1 & - \frac{1}{4} & \frac{3}{4} & 3 \\\\ 0 & \frac{1}{2} & \frac{15}{2} & -11 \\\\ 1 & 4 & 6 & -32 \end{array} \right]

Step 4: \left(R_3=R_3-R_1\right)

\left[ \begin{array}{ccc|c} 1 & - \frac{1}{4} & \frac{3}{4} & 3 \\\\ 0 & \frac{1}{2} & \frac{15}{2} & -11 \\\\ 0 & \frac{17}{4} & \frac{21}{4} & -35 \end{array} \right]

Step 5: \left(R_2=\left(2\right)R_2\right)

\left[ \begin{array}{ccc|c} 1 & - \frac{1}{4} & \frac{3}{4} & 3 \\\\ 0 & 1 & 15 & -22 \\\\ 0 & \frac{17}{4} & \frac{21}{4} & -35 \end{array} \right]

Step 6: \left(R_1=R_1+\left(\frac{1}{4}\right)R_2\right)

\left[ \begin{array}{cccc} 1 & 0 & \frac{9}{2} & - \frac{5}{2} \\\\ 0 & 1 & 15 & -22 \\\\ 0 & \frac{17}{4} & \frac{21}{4} & -35 \end{array} \right]

Step 7: \left(R_3=R_3-\left(\frac{17}{4}\right)R_2\right)

\left[ \begin{array}{ccc|c} 1 & 0 & \frac{9}{2} & - \frac{5}{2} \\\\ 0 & 1 & 15 & -22 \\\\ 0 & 0 & - \frac{117}{2} & \frac{117}{2} \end{array} \right]

Step 8: \left(R_3=\left(- \frac{2}{117}\right)R_3\right)

\left[ \begin{array}{cccc} 1 & 0 & \frac{9}{2} & - \frac{5}{2} \\\\ 0 & 1 & 15 & -22 \\\\ 0 & 0 & 1 & -1 \end{array} \right]

Step 9: \left(R_1=R_1-\left(\frac{9}{2}\right)R_3\right)

\left[ \begin{array}{cccc} 1 & 0 & 0 & 2 \\\\ 0 & 1 & 15 & -22 \\\\ 0 & 0 & 1 & -1 \end{array} \right]

Step 10: \left(R_2=R_2-\left(15\right)R_3\right)

\left[ \begin{array}{cccc} 1 & 0 & 0 & 2 \\\\ 0 & 1 & 0 & -7 \\\\ 0 & 0 & 1 & -1 \end{array} \right]

Step 11:

\left[ \begin{array}{ccc|c} 1 & 0 & 0 & 2 \\\\ 0 & 1 & 0 & -7 \\\\ 0 & 0 & 1 & -1 \end{array} \right]\rightarrow \left\begin{array}{ccc}x_1&=&2\\x_2&=&-7\\x_3&=&-1\end{array}\right

8 0
3 years ago
How many equal sections divide a directed line segment if it is to be partitioned with a 2:7 ratio? 2, the least number given in
Elodia [21]

9514 1404 393

Answer:

  9, the sum of the numbers given in the ratio

Step-by-step explanation:

The reduced ratio 2 : 7 means that two parts correspond to one length and 7 parts correspond to the other length. That is, there are a total of 2+7 = 9 parts in the full length of the segment.

It is convenient to think of the line segment as being divided into 9 equal parts.

_____

<em>Additional comments</em>

It is often helpful to consider the total number of "ratio units" in a given ratio. For example, in this problem, the shorter segment is 2/9 of the whole, and the longer one is 7/9 of the whole.

It can also be useful to consider what a "ratio unit" represents. If the whole segment is 27 inches long, then each of the 9 ratio units will represent 3 inches, for example. This means the division 2:7 is 2(3 in):7(3 in) = 6 in : 21 in.

3 0
3 years ago
If the point (x,square root 3/2) is on the unit circle, what. is x?
galina1969 [7]

Answer:

x=\pm\frac{1}{2}

Step-by-step explanation:

On a unit circle, (x,y)=(\cos\theta,\sin\theta), so \sin\theta=\frac{\sqrt{3}}{2} in this case. If you look at the attached circle, the only time that the y-coordinate is \frac{\sqrt{3}}{2} is when x=-\frac{1}{2} and x=\frac{1}{2}, which correspond to angles of \theta=\frac{2\pi}{3} and \theta=\frac{\pi}{3} respectively

3 0
3 years ago
Other questions:
  • Which of the following are accurate descriptions of data distribution shown below
    6·2 answers
  • Two non congruent triangles, each with side 6cm and angle measuring 40 degrees
    10·1 answer
  • Find a non-zero, two-by-two matrix such that:
    13·1 answer
  • Draw the straight line y= x+2
    7·1 answer
  • 4 friends earn $10.40 for washing a car. how each did each friend get
    13·2 answers
  • Math be like 0-0????
    5·1 answer
  • Find the exact values of the solutions in the interval 0 &lt;= x &lt; 2pi of the following equations without using a calculator.
    11·1 answer
  • Plz help will mark brainliest if correct this is due in 10 minutes ​
    15·2 answers
  • can someone show me how this problem would work out? I dont just want an answer I want to see how this problem is worked out. Th
    6·1 answer
  • Please help!! will mark branliest
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!