Answer: The correct answer is option b.
Explanation: We are given that the rocket is at rest initially final velocity is 445m/s.
The acceleration of the rocket is 
To calculate the distance of rocket, we use third equation of motion, which is:

where, v = final velocity = 445m/s
u = initial velocity = 0m/s
a = acceleration = 
s = distance = ? m
Putting values in above equation, we get:

Explanation:
Given that,
Initial speed of the billiard ball 1, u = 30i cm/s
Initial speed of another billiard ball 2, u' = 40j cm/s
After the collision,
Final speed of first ball, v = 50 cm/s
Final speed of second ball, v' = 0 (as it stops)
Let us consider that both balls have same mass i.e. m
Initial kinetic energy of the system is :

Final kinetic energy of the system is :

The change in kinetic energy of the system is equal to the difference of final and initial kinetic energy as :
So, the change in kinetic energy of the system as a result of the collision is equal to 0.
Answer:
The velocity of the center of mass of the two-object system remains constant during the experiment.
In general, it is felt that ice ages are caused by a chain reaction of positive feedbacks triggered by periodic changes in the Earth's orbit around the Sun. The last ice age ended about 12,000 years ago. The next cooling cycle would be expected to start about 30,000 years or more into the future.