For this case we have the following equation:
r = 9 sin (θ)
In addition, we have the following change of variables:
y = r * sine (θ)
Rewriting the equation we have:
r = 9 sin (θ)
r = 9 (y / r)
r ^ 2 = 9y
On the other hand:
r ^ 2 = x ^ 2 + y ^ 2
Substituting values:
x ^ 2 + y ^ 2 = 9y
Rewriting:
x ^ 2 + y ^ 2 - 9y = 0
Completing squares:
x ^ 2 + y ^ 2 - 9y + (-9/2) ^ 2 = (-9/2) ^ 2
Rewriting:
x ^ 2 + 1/4 (2y-9) ^ 2 = 81/4
4x ^ 2 + (2y-9) ^ 2 = 81
Answer:
The Cartesian equation is:
4x ^ 2 + (2y-9) ^ 2 = 81
Answer:
x is greater than -4
Step-by-step explanation:
Step-by-step explanation:
Hey there!
It is said we need to find the unit rate.
What we can do is apply Unitary Method.
3 minutes = 42 push ups
1 minute = 
<u>So, 12 push ups per minute is the unit rate.</u>
In 5 minutes, he will do 12×5 = <u>60 push ups!</u>
Hope it helps :)
Question 14, Part (i)
Focus on quadrilateral ABCD. The interior angles add to 360 (this is true for any quadrilateral), so,
A+B+C+D = 360
A+90+C+90 = 360
A+C+180 = 360
A+C = 360-180
A+C = 180
Since angles A and C add to 180, this shows they are supplementary. This is the same as saying angles 2 and 3 are supplementary.
==================================================
Question 14, Part (ii)
Let
x = measure of angle 1
y = measure of angle 2
z = measure of angle 3
Back in part (i) above, we showed that y + z = 180
Note that angles 1 and 2 are adjacent to form a straight line, so we can say
x+y = 180
-------
We have the two equations x+y = 180 and y+z = 180 to form this system of equations

Which is really the same as this system

The 0s help align the y terms up. Subtracting straight down leads to the equation x-z = 0 and we can solve to get x = z. Therefore showing that angle 1 and angle 3 are congruent. We could also use the substitution rule to end up with x = z as well.