1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Slav-nsk [51]
2 years ago
9

Help me plllssessssseeee​

Mathematics
1 answer:
BARSIC [14]2 years ago
4 0

Answer:

90909090909090909090909

Step-by-step explanation:

You might be interested in
Simplify the following expression by combining like terms:<br> - 2 +63 +2 - 2x + 8 - 4:
tangare [24]

Answer:

6+4x-3z

Step-by-step explanation:

<u>-2</u>+6x+z-2x<u>+8</u>-4z

6<u>+6x</u>+z<u>-2x</u>-4z

6+4x<u>+z-4z</u>

6+4x-3z

5 0
3 years ago
a set v is given, together with definitions of addition and scalar multiplication. determine which properties of a vector space
agasfer [191]

The properties of a vector space are satisfied Properties 1,2, 5(a) and 5(c) are satisfied, the relaxation of the homes aren't legitimate are ifv = x ^ 2 1× v=1^ ×x ^ 2 = 1 #V

Property three does now no longer follow: Suppose that Property three is legitimate, shall we namev = a * x ^ 2 +bx +cthe neuter of V. Since v is the neuter, then O have to be constant with the aid of using the neuted, consequently 0 = O + v = (O  x ^ 2 + Ox + O) + (a × x ^ 2 + bx + c) = c × x ^ 2 + b ^ 2 + a

= 0 If O is the neuter, then it ought to restore x², but 0+ x² = (0x²+0x+zero) + (x²+0x+zero) = 1.This is a contradiction due to the fact x² isn't 1. We finish that V doesnt have a neuter vector. This additionally method that belongings four would not observe either. A set with out 0 cant

have additive inverse

Let r= v ×2x ^ 2 + v × 1x +v0 , w= w ×2x ^ 2 + w × 1x +w0 . We have that\\v+w= (vO + wO) ^  x^ 2 +(vl^ × wl)^  x+ ( v 2^ × w2)• w+v= (wO + vO) ^x^ 2 +(wl^ × vl)x+ ( w 2^ ×v2)

Since the sum of actual numbers is commutative, we finish that v + w = w + v Therefore, belongings 5(a) is valid.

Property 5(b) isn't valid: we are able to introduce

a counter example. we could use z = 1 thenv = x ^ 2 w = x ^ 2 + 1\\(v + w) + z = (x ^ 2 + 2) + 1 = 3x ^ 2 + 1

v + (w + z) = x ^ 2 + (2x ^ 2 + 1) = x ^ 2 + 3

Since 3x ^ 2 +1 ne x^ 2 +3. then the associativity rule doesnt hold.

(1+2)^ * (x^ 2 +x)=3^ * (x ^ 2 + x) = 3x + 3\\1^ × (x^ 2 +x)+2^ × (x ^ 2 + x) = (x + 1) + (2x + 2) = 3x ^ 2 + x ( ne 3x + 3 )\\(1^ ×2)^ ×(x^ 2 +x)=2^ × (x ^ 2 + x) = 2x + 2\\1^ × (2^ × (x ^ 2 + x) )=1^ × (2x+2)=2x^ 2 +2x( ne2x+2)

Property f doesnt observe because of the switch of variables. for instance, if v = x ^ 2 1 × v=1^ × x ^ 2 = 1 #V

Properties 1,2, 5(a) and 5(c) are satisfied, the relaxation of the homes arent legitimate.

Step-with the aid of using-step explanation:

Note that each sum and scalar multiplication entails in replacing the order from that most important coefficient with the impartial time period earlier than doing the same old sum/scalar multiplication.

Property three does now no longer follow: Suppose that Property three is legitimate, shall we name v = a × x ^ 2 +bx +c the neuter of V. Since v is the neuter, then O have to be constant with the aid of using the neuted, consequently0 = O + v = (O × x ^ 2 + Ox + O) + (a × x ^ 2 + bx + c) = c × x ^ 2 + b ^ 2 + a

= zero If O is the neuter, then it ought to restore x², but zero + x² = (0x²+0x+zero) + (x²+0x+zero) = 1.This is a contradiction due to the fact x² isn't 1. We finish that V doesnt have a neuter vector. This additionally method that belongings four would not observe either. A set with out 0 cant have additive inverse

Let r= v × 2x ^ 2 + v × 1x +v0 , w= w2x ^ 2 + w × 1x +w0 . \\We have thatv+w= (vO + wO) ^ x^ 2 +(vl^ wl)^x+ ( v 2^ w2)w+v= (wO + vO) ^ x^ 2 +(wl^ vl)x+ ( w 2^v2)

Since the sum of actual numbers is commutative, we finish that v + w = w + v Therefore, belongings 5(a) is valid.

Property 5(b) isn't valid: we are able to introduce

a counter example. we could usez = 1 then v = x ^ 2 w = x ^ 2 + 1(v + w) + z = (x ^ 2 + 2) + 1 = 3x ^ 2 + 1v + (w + z) = x ^ 2 + (2x ^ 2 + 1) = x ^ 2 + 3\\Since 3x ^ 2 +1 ne x^ 2 +3.then the associativity rule doesnt hold.

Note that each expressions are same because of the distributive rule of actual numbers. Also, you could be aware that his assets holds due to the fact in each instances we 'switch variables twice.

· (1+2)^ * (x^ 2 +x)=3^ * (x ^ 2 + x) = 3x + 31^ * (x^ 2 +x)+2^ * (x ^ 2 + x) = (x + 1) + (2x + 2) = 3x ^ 2 + x ( ne 3x + 3 )(1^ * 2)^ * (x^ 2 +x)=2^ * (x ^ 2 + x) = 2x + 21^ * (2^ * (x ^ 2 + x) )=1^ ×* (2x+2)=2x^ 2 +2x( ne2x+2)

Read more about polynomials :

brainly.com/question/2833285

#SPJ4

8 0
1 year ago
Factor the following: x2−16x+64
boyakko [2]

Answer:

why wont u just go to quizlet for the answer of look it up on calculator soup it is a great place for those kinds of answers

Step-by-step explanation:

3 0
3 years ago
Is 10 and 6 a proportional relationship
pashok25 [27]

Answer:

no

Step-by-step explanation:

6 0
3 years ago
Which of the following functions has a vertex of (-1,2)?
Firlakuza [10]

Answer:

f(x) , r(x), t(x)

Step-by-step explanation:

6 0
3 years ago
Other questions:
  • A cable is 90 decimeters long. How long is the cable in meters
    10·2 answers
  • Can anyone help me with the question I attached below?
    9·1 answer
  • Find the critical numbers of the function. (Enter your answers as a comma-separated list. Use n to denote any arbitrary integer
    14·1 answer
  • What is 26.2 divided by 2.121
    8·2 answers
  • Can you help please!!!!
    12·2 answers
  • In a survey, 15 high school students said they could drive and 15 said they could not. Out of 60 college students surveyed, 30 s
    15·2 answers
  • Find y give your answer in simplest form​
    5·1 answer
  • Find the area of each circle. Round to the nearest tenth.
    13·1 answer
  • Given constants a and b such that x2 + ax + b has factors (x + 7) and (x + 2) what is a?​
    15·1 answer
  • Write the expression in simpliest form WILL MARK BRAINLIEST<br> 8 ( -3x + 2)
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!