Answer:
the intercept of the line with the y-axis. Substitute the line's slope and intercept as "m" and "c" in the equation "y = mx + c." With this example, this produces the equation "y = 0.667x + 10.33." This equation predicts the y-value of any point on the plot from its x-value.
Step-by-step explanation:
hope it help
Unrealiable
If she wants to know how to pay taxes she should visit the governments webiste. This is a third party website and could give her unreliable infortmation, she should be checking with the governments website.
#1. The number line goes by intervals of 0.2, so if A is equal to 7.28, then it’ll go in between the first line after 7 and the second line after 7. This is similar with B and C. B will go on the second line after 9, and C will go in between the second and third line after 10.
#3. You started out well. You combine your like terms on the sides of the equation to get 8x - 2 = 4x + 6. Then, you’ll subtract 4x to get 4x - 2 = 6. Add 2 to get 4x =8, then divide by 4 to get x = 2. On the other one, combine your terms to get -6 + 5y = 29. Then, add 6 so you have 5y = 35. Divide by 5 to get y = 7.
#4. When you classify a number, you need to classify it as whatever it is in your disgramdiagram, and the larger ones as well. For example, -2 is an integer, so it is also a rational number. 3/4 is a rational number. The square root of 2 over 2 is an irrational number. 292 is a counting, whole, integer, and rational number. -19/3 is a rational number. 6.9696... is an irrational number. (It has the three dots [...] so it’ll go on forever with no pattern.)
I hope this helps! Please tell me if you need any clarification. :)
Answer:
-37/5= y
x=11/5
Step-by-step explanation:
4x-3y=31
-3y=-4x+31 regroup it to match the other
-2 y=(2x-3)(-2) multiply by -2 to get -4x
-3y=-4x+31
-2y=-4x+6 adding
-5y=37 divide
-37/5= y
4x-3(-37/5)=31
x=11/5
Answer:
DE = 18
Step-by-step explanation:
Given that,
Point D is on line segment CE.
DE = x+10, CD=6 and CE=3x
We need to find the length of DE.
ATQ,
CE = CD + DE
Putting all the values,
3x = 6 + x+10
Taking like terms together
3x-x = 16
2x = 16
x = 8
DE = x+10
= 8+10
= 18
Hence, the length of DE is 18.