14.
Angles 4 and 6 are supplementary, because they are on the same line. Supplementary angles add up to 180 degrees, and a line must be 180 degrees.
15.
Angles 1 and 8 are congruent, because they are alternate exterior angles
16.
m = y2 - y1 / x2 - x1
m = 7 - 2 / 4 - 5
m = 5 / -1
m = -5
17.
m = 3 - 3 / 7 - (-5)
m = 0 / 12
m = 0
18.
m = 1 - (-2) / 5 - (-4)
m = 3 / 9
m = 1/3
19.
A = (0, 3) - B = (3,0)
m = 0 - 3 / 3 - 0
m = -3 / 3
<em>m = -1</em>
C = (0, -2) - D = (4, 2)
m = 2 - (-2) / 4 - 0
m = 4 / 4
<em>m = 1</em>
Perpendicular, because the slopes are opposite reciprocals.
20.
E = (1, 2) - F = (0, 0)
m = 0 - 2 / 0 - 1
m = -2 / -1
<em>m = 2</em>
G = (1, -3) - H = (3, 0)
m = 0 - (-3) / 3 - 1
<em>m = 3 / 2</em>
Neither, because the slopes are different.
21.
I = (0, 1) - J = (2, -4)
m = -4 - 1 / 2 - 0
<em>m = -5/2</em>
K = (-1, -2) - L = (4, 0)
m = 0 - (-2) / 4 - (-1)
<em>m = 2/5</em>
Perpendicular, because the slopes are opposite reciprocals.
22.
M = (-2, 2) - N = (2, 2)
Horizontal line
<em>m = 0</em>
O = (3, 0) - P = (-3, 0)
Horizontal line
<em>m = 0
</em>Parallel, because the slopes are the same.
<em>
</em>23.
Angle 2 is congruent to angle 1 because of the alternate exterior angle theorem.
Angle 1 is congruent to angle 3 because of the vertical angle theorem.
Angle 2 is congruent to angle 3 because of substitution.
Line l is parallel to line m because the corresponding angles are congruent.
Step-by-step explanation:
(ax + b)² = a²x² + 2abx + b²
In this case, a = 1, so:
14 = 2b
b = 7
(x + 7)² = x² + 14x + 49
Answer:
<30,-20>
Step-by-step explanation:
4u + 2v
4< 6,-4> + 2< 3,-2>
<24,-16> + < 6,-4>
<30,-20>
Answer:
The scatter diagram that contains the correlation coefficient closest to r = 1 is the first one shown in the attached images.
Step-by-step explanation:
The correlation coefficient "r" measures how much two variables x and y are related. When the variables are highly related, the value of r is closer to one and the points contained in the scatter diagrams are assimilated more and more to a line. When the value of r is positive the relation is crescent and therefore the slope of the line drawn by the points in the diagram has a positive slope
Therefore, to answer this question, one must search among the attached images for the dispersion diagram in which the points resemble a straight line with a positive slope.
The scatter diagram that meets the requirements mentioned is the first one that appears in the attached images
They are intersecting lines if they are not parallel so the other option is that they are intersecting.<span />