Answer:
163/324
Step-by-step explanation:
Answer:
-$73.73
Step-by-step explanation:
To get this answer, we must subtract 23.73 from -50, as Mr. Alexander is losing money by spending. Once we subtract, we get -73.73 dollars.
Hope this helps!
The area of a triangle is given by the formula

, where B is the base and h is the height. We can rearrange this formula to solve for B.

.
We plug in the given area, 640 square millimeters, and the given height, 32 millimeters.

.
40 mm is our final answer.
If you are talking about the binomial being expanded then it would be:
8x^3 + 12x^2y + 6xy^2 + y^3
The y in the second term is not part of the exponent
And since you are raising the binomial to the third, you would be using the third row of Pascal's triangle.
Hope this helped!
The key is Esther travelled the same distance - x - in both her morning and evening commute.
45(time she took in the morning, or p) = x
30(time she took in the evening, or q) = x
Therefore 45(p) = 30(q), or divide both sides by 5 and get 9(p) = 6(q). I know you can divide it further, but these numbers are small enough and it's not worth the time.
Since the whole trip took an hour, (p + q) = 60min, and so, p = 60-q.
Therefore 9(60-q) = 6q or 540-9q = 6q. So 540 = 15q, which makes q = 36. If q = 36, then by (p+q)=60, p (the time she took in the morning) must equal 24.
45 miles per hour, her speed in the morning, times (24/60) hours, her time, makes 18 miles travelled in the morning. If you check, 30 miles per hour times (36/60) hours also makes 18 miles in the evening.
<span>Hope that makes a little sense. And I also hope it's right</span>