1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AysviL [449]
2 years ago
14

How do find the measures of angles with a vertex inside or outside circle?

Mathematics
1 answer:
pantera1 [17]2 years ago
6 0

Step-by-step explanation:

Figure %: An angle whose vertex is in the interior of a circle The measure of angle 1 is equal to half the sum of the measures of arcs AB and DE. When an angle's vertex lies outside of a circle, and its sides don't intersect with the circle, we don't necessarily know anything about the angle.

You might be interested in
24 divided by [(6 divided by 2) - (4 divided by 2)
Ilya [14]

Answer:

Im pretty sure the answer is 6

Step-by-step explanation:

Leave the 24 aside for a sec. Focus on the 6÷2 and 4÷2. 6 divided by 2 is 3. And 4 divided by 2 is 2. So now its 24÷3= 8

8-2=6

7 0
3 years ago
What is –15 ÷3 over 5 ? (over means fraction) <br> A. -9 <br> B. -I over 25<br> C.-25<br> D-1 over 9
Vlad1618 [11]
Well -15 divided by 3 is -5, so -5\5 = -1. But that's not one of the answers...
7 0
3 years ago
How to put 3 and 5 hundredths in standard form
astraxan [27]
In standard for its either 3 5/100 or 3.05
3 0
3 years ago
In Exercises 11-18, use analytic methods to find the extreme values of the function on the interval and where they occur. Identi
Colt1911 [192]

Answer:

Absolute maximum of 1 at x = pi/4 ; (\frac{\pi}{4}, \ 1)

Absolute minimum of -1 at x = 5pi/4 ; (\frac{5\pi}{4} , \ -1)

Local maximum of √2/2 at x = 0 ; (0, \ \frac{\sqrt{2} }{2} )

Local minimum of 0 at x = 7pi/4 ; (\frac{7\pi}{4}, \ 0)

No critical points that are not stationary points.

Step-by-step explanation:

f(x)=sin(x+\frac{\pi}{4} ), \ 0 \leq x\leq \frac{7 \pi}{4}

<h2>Take Derivative of f(x):</h2>

Let's start by taking the derivative of the function.

Use the power rule and the chain rule to take the derivative of f(x).

  • f'(x)=\frac{d}{dx}  [sin(x+\frac{\pi}{4})] \times \frac{d}{dx}  (x+\frac{\pi}{4})

The derivative of sin(x) is cos(x), so we can write this as:

  • f'(x)=cos(x+\frac{\pi}{4})\times \frac{d}{dx}  (x+\frac{\pi}{4})

Now, we can apply the power rule to x + pi/4.

  • f'(x)=cos(x+\frac{\pi}{4} ) \times 1
  • f'(x)=cos(x+\frac{\pi}{4} )
<h2>Critical Points: Set f'(x) = 0</h2>

Now that we have the first derivative of f(x)=sin(x+\frac{\pi}{4}), let's set the first derivative to 0 to find the critical points of this function.

  • 0=cos(x+\frac{\pi}{4})

Take the inverse cosine of both sides of the equation.

  • cos^-^1(0) = cos^-^1[cos(x+\frac{\pi}{4})]

Inverse cosine and cosine cancel out, leaving us with x + pi/4. The inverse cosine of 0 is equal to 90 degrees, which is the same as pi/2.

  • \frac{\pi}{2} = x +\frac{\pi}{4}

Solve for x to find the critical points of f(x). Subtract pi/4 from both sides of the equation, and move x to the left using the symmetric property of equality.

  • x=\frac{\pi}{2}- \frac{\pi}{4}
  • x=\frac{2 \pi}{4}-\frac{\pi}{4}
  • x=\frac{\pi}{4}

Since we are given the domain of the function, let's use the period of sin to find our other critical point: 5pi/4. This is equivalent to pi/4. Therefore, our critical points are:

  • \frac{\pi}{4}, \frac{5 \pi}{4}  
<h2>Sign Chart(?):</h2>

Since this is a sine graph, we don't need to create a sign chart to check if the critical values are, in fact, extreme values since there are many absolute maximums and absolute minimums on the sine graph.

There will always be either an absolute maximum or an absolute minimum at the critical values where the first derivative is equal to 0, because this is where the sine graph curves and forms these.

Therefore, we can plug the critical values into the original function f(x) in order to find the value at which these extreme values occur. We also need to plug in the endpoints of the function, which are the domain restrictions.

Let's plug in the critical point values and endpoint values into the function f(x) to find where the extreme values occur on the graph of this function.

<h2>Critical Point Values:</h2>
  • f(\frac{\pi}{4} )=sin(\frac{\pi}{4} + \frac{\pi}{4} ) \\ f(\frac{\pi}{4} )=sin(\frac{2\pi}{4}) \\ f(\frac{\pi}{4} )=sin(\frac{\pi}{2}) \\ f(\frac{\pi}{4} )=1

There is a maximum value of 1 at x = pi/4.

  • f(\frac{5\pi}{4} )=sin(\frac{5\pi}{4} + \frac{\pi}{4} ) \\ f(\frac{5\pi}{4} )=sin(\frac{6\pi}{4}) \\ f(\frac{5\pi}{4}) = sin(\frac{3\pi}{2}) \\ f(\frac{5\pi}{4} )=-1

There is a minimum value of -1 at x = 5pi/4.

<h2>Endpoint Values:</h2>
  • f(0) = sin((0) + \frac{\pi}{4}) \\ f(0) = sin(\frac{\pi}{4}) \\ f(0) = \frac{\sqrt{2} }{2}

There is a maximum value of √2/2 at x = 0.

  • f(\frac{7\pi}{4} ) =sin(\frac{7\pi}{4} +\frac{\pi}{4}) \\  f(\frac{7\pi}{4} ) =sin(\frac{8\pi}{4}) \\ f(\frac{7\pi}{4} ) =sin(2\pi) \\ f(\frac{7\pi}{4} ) =0

There is a minimum value of 0 at x = 7pi/4.

We need to first compare the critical point values and then compare the endpoint values to determine whether they are maximum or minimums.

<h2>Stationary Points:</h2>

A critical point is called a stationary point if f'(x) = 0.

Since f'(x) is zero at both of the critical points, there are no critical points that are not stationary points.  

6 0
3 years ago
I need help please, I am so confused.​
vazorg [7]

Answer:

\begin{tabular}{| c | c | c |}\cline{1-3} Equation & x-intercepts & x-coordinate of vertex\\\cline{1-3} $y=x(x-2)$ & $x=0, x=2$ & $x=1$\\\cline{1-3} $y=(x-4)(x+5)$ & $x=-5, x=4$ & $x=-0.5$\\\cline{1-3} $y=-5x(x-3)$ & $x=0, x=3$ & $x=1.5$\\\cline{1-3} \end{tabular}

Step-by-step explanation:

x-intercepts are when the curve intercepts the x-axis, so when y =0.

Therefore, to find the x-intercepts, substitute y = 0 and solve for x.

The vertex is the turning point:  the minimum point of a parabola that opens upward, and the maximum point of the parabola that opens downward.  As a parabola is symmetrical, the x-coordinate of the vertex is the midpoint of the x-intercepts.

Equation:  y=x(x-2)

\implies x(x-2)=0

\implies x=0

\implies (x-2)=0 \implies x=2

Therefore, the x-intercepts are x = 0 and x = 2

The midpoint of the x-intercepts is x = 1, so the x-coordinate of the vertex is x = 1

Equation: y=(x-4)(x+5)

\implies (x-4)(x+5)=0

\implies (x-4)=0 \implies  x=4

\implies (x+5)=0 \implies x=-5

Therefore, the x-intercepts are x = -5 and x = 4

The midpoint of the x-intercepts is x = -0.5, so the x-coordinate of the vertex is x = -0.5

Equation: y=-5x(3-x)

\implies -5x(3-x)=0

\implies -5x=0 \implies x=0

\implies (3-x)=0 \implies x=3

Therefore, the x-intercepts are x = 0 and x = 3

The midpoint of the x-intercepts is x = 1.5, so the x-coordinate of the vertex is x = 1.5

\begin{tabular}{| c | c | c |}\cline{1-3} Equation & x-intercepts & x-coordinate of vertex\\\cline{1-3} $y=x(x-2)$ & $x=0, x=2$ & $x=1$\\\cline{1-3} $y=(x-4)(x+5)$ & $x=-5, x=4$ & $x=-0.5$\\\cline{1-3} $y=-5x(x-3)$ & $x=0, x=3$ & $x=1.5$\\\cline{1-3} \end{tabular}

4 0
2 years ago
Other questions:
  • Johnson bought 4 1/4 gallons of ice cream for the celebration the baseball team ate 3/4 of it how many gallons of ice cream did
    10·2 answers
  • Need a simple Math question Answered
    14·2 answers
  • Simplify (tan^2 x/sec x + 1) + 1
    6·1 answer
  • Write the answer in scientific notation
    10·1 answer
  • Please! Desperate need for help!<br> Maths!<br> Will award brainiest!
    5·1 answer
  • What is the answer to this problem? <br><br> 2 1/3 + 3 1/3 =?
    6·1 answer
  • #11 with explanation and answer <br> Tysm
    6·2 answers
  • Translate this sentence into an equation.
    11·1 answer
  • It’s easier to read if you zoom in the picture
    14·1 answer
  • A number one followed by one hundred zeros is known by what name.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!