Answer:
15ab
Step-by-step explanation:
When you multiply out the square (p+q)^2, you get the trinomial ...
(p +q)^2 = p^2 + 2pq + q^2
Your binomial is (3a+2.5b), so you have ...
p = 3a
q = 2.5b
and the trinomial you get when you multiply it out is ...
(3a)^2 + 2(3a)(2.5b) + (2.5b)^2
= 9a^2 + 15ab + 6.25b^2
The first and last of these terms are shown on the right side of the given expression, so to finish out the identity, you need to replace * with 15ab.
Well you have to go by 24x3 and that equals 72 miles
Answer: Rectangle
Reasoning: 4 straight sides, 2 pairs of sides of equal length.
Answer:
79.2 km/hour
Step-by-step explanation:
1 m/sec= 3.6 km/hour 22m/sec= ? so just multiply 22 m/sec by 3.6 km/hour then the answer will be :- 79.2 km/hour
Answer:
The probability that the child must wait between 6 and 9 minutes on the bus stop on a given morning is 0.148.
Step-by-step explanation:
Let the random variable <em>X</em> represent the time a child spends waiting at for the bus as a school bus stop.
The random variable <em>X</em> is exponentially distributed with mean 7 minutes.
Then the parameter of the distribution is,
.
The probability density function of <em>X</em> is:

Compute the probability that the child must wait between 6 and 9 minutes on the bus stop on a given morning as follows:

![=\int\limits^{9}_{6} {\frac{1}{7}\cdot e^{-\frac{1}{7} \cdot x}} \, dx \\\\=\frac{1}{7}\cdot \int\limits^{9}_{6} {e^{-\frac{1}{7} \cdot x}} \, dx \\\\=[-e^{-\frac{1}{7} \cdot x}]^{9}_{6}\\\\=e^{-\frac{1}{7} \cdot 6}-e^{-\frac{1}{7} \cdot 9}\\\\=0.424373-0.276453\\\\=0.14792\\\\\approx 0.148](https://tex.z-dn.net/?f=%3D%5Cint%5Climits%5E%7B9%7D_%7B6%7D%20%7B%5Cfrac%7B1%7D%7B7%7D%5Ccdot%20e%5E%7B-%5Cfrac%7B1%7D%7B7%7D%20%5Ccdot%20x%7D%7D%20%5C%2C%20dx%20%5C%5C%5C%5C%3D%5Cfrac%7B1%7D%7B7%7D%5Ccdot%20%5Cint%5Climits%5E%7B9%7D_%7B6%7D%20%7Be%5E%7B-%5Cfrac%7B1%7D%7B7%7D%20%5Ccdot%20x%7D%7D%20%5C%2C%20dx%20%5C%5C%5C%5C%3D%5B-e%5E%7B-%5Cfrac%7B1%7D%7B7%7D%20%5Ccdot%20x%7D%5D%5E%7B9%7D_%7B6%7D%5C%5C%5C%5C%3De%5E%7B-%5Cfrac%7B1%7D%7B7%7D%20%5Ccdot%206%7D-e%5E%7B-%5Cfrac%7B1%7D%7B7%7D%20%5Ccdot%209%7D%5C%5C%5C%5C%3D0.424373-0.276453%5C%5C%5C%5C%3D0.14792%5C%5C%5C%5C%5Capprox%200.148)
Thus, the probability that the child must wait between 6 and 9 minutes on the bus stop on a given morning is 0.148.