It’s A. The other ones don’t work.
Answer:
Step-by-step explanation:
You can make equations.
M+J=51
M-J=17
Subtracting first equation from second equation:
2J=34
J=17 Jordan is 17
Therefore, Mike, is 34.
A) y = 2x – 7 and f(x) = 7 – 2xIncorrect. These equations look similar but are not the same. The first has a slope of 2 and a y-intercept of −7. The second function has a slope of −2 and a y-intercept of 7. It slopes in the opposite direction. They do not produce the same graph, so they are not the same function. The correct answer is f(x) = 3x2 + 5 and y = 3x2 + 5. B) 3x = y – 2 and f(x) = 3x – 2Incorrect. These equations represent two different functions. If you rewrite the first equation in terms of y, you’ll find the equation of the function is y = 3x + 2. The correct answer is f(x) = 3x2 + 5 and y = 3x2 + 5. C) f(x) = 3x2 + 5 and y = 3x2 + 5Correct. The expressions that follow f(x) = and y = are the same, so these are two different ways to write the same function: f(x) = 3x2 + 5 and y = 3x2 + 5. D) None of the aboveIncorrect. Look at the expressions that follow f(x) = and y =. If the expressions are the same, then the equations represent the same exact function. The correct answer is f(x) = 3x2 + 5 and y = 3x2 + 5.
Answer:
x=15
Step-by-step explanation:
2x-10=20
2x-10+10=20+10
2x=30
2x/2 = 30/2
x=15
Answer:
Step-by-step explanation:
The graph shows the solution (-6,2)
i.e at x= -6 y=2
Analysis of each of the answers, since we can't write the equation of a straight line with only that information i.e the single point
Then,
Option 1
1. 2x - 3y = -6
x= -6 y=2
Then let insert x=-6 and y =2
2(-6)-3(2)
-12-6
-18.
Since -18 ≠ -6, then this is not the equation of the line and doesn't make up the system
Option 2
2. 4x - y = 26
Inserting x=-6 and y=2
4(-6)-(2)
-24-2
-26
Since -26 ≠ 26, then this is not the equation of the line and doesn't make up the system
Option 3
3. 3x + 2y = -14
Inserting x=-6 and y=2
3(-6)+2(2)
-18+4
-14
Since -14 ≠ -14 then this is the equation of the line and it make up the system.
Option 4
x-y = -2
Inserting x=-6 and y=2
(-6)-(2)
-6-2
-8
Since -8≠ -2, then this is not the equation of the line and doesn't make up the system
Option 5
5. x+y=-4
Inserting x=-6 and y=2
(-6)+(2)
-6+2
-4
Since -4 ≠ -4, then this is the equation of the line and it makes up the system.
Then, there are two option that make up the system
3. 3x + 2y = -14
And
5. x+y=-4