Answer:
Explanation:
Let the charge particle have charge equal to +q .
force due to electric field will be along the field that is along y - axis . To balance it force by magnetic force must be along - y axis. ( negative of y axis )
force due to magnetic field = q ( v x B ) , v is velocity and B is magnetic field.
F = q ( v i x B k ) , ( velocity is along x direction and magnetic field is along z axis. )
= (Bqv) - j
= - Bqv j
The force will be along - ve y - direction .
If we take charge as negative or - q
force due to electric field will be along - y axis .
magnetic force = F = -q ( v i x B k )
= + Bqv j
magnetic force will be along + y axis
So it is difficult to find out the nature of charge on the particle from this experiment.
The magnetic field at center of circular loops of wire is 3.78 x 10¯⁵ T.
We need to know about the magnetic field at the center of circular loops of wire to solve this problem. The magnetic field at the center can be determined as
B = μ₀ . I / 2r
where B is magnetic field, μ₀ is vacuum permeability (4π×10¯⁷ H/m), I is the current and r is radius.
From the question above, we know that:
r = 4 cm = 0.04 m
I = 1.7 A
By substituting the parameter, we get
B = μ₀ . I / 2r
B = 4π×10¯⁷ . 1.7 / (2.0.04)
B = 2.67 x 10¯⁵ T
Due to the perpendicular plane of loops, the total magnetic field at center will be
Btotal = √(2(B²))
Btotal = √(2(2.67 x 10¯⁵²))
Btotal = 3.78 x 10¯⁵ T
Find more on magnetic field at: brainly.com/question/7802337
#SPJ4
Well, if the salt that Gerry's looking at under a powerful microscope has a crystalline structure, then that's saying that salt is technically a solid.
(I hope that this is an answer you were looking for)