Answer : The correct option is (d) 2.73 m
Explanation :
By the 2nd equation of motion,

where,
s = distance or height = ?
u = initial velocity = 3.0 m/s
t = time = 0.5 s
a = acceleration due to gravity = 
Now put all the given values in the above equation, we get:


Therefore, the correct option is (d) 2.73 m
It should be A.
A ball bouncing is moving so if it’s moving that means it has kinetic energy. It also has potential energy because when it hits the floor it kind of stops so it has potential.
-Hope this helps.
Answer:
0.265
Explanation:
Draw a free body diagram. There are four forces:
Normal force Fn pushing up.
Weight force mg pulling down.
Tension force T at an angle θ.
Friction force Fn μ pushing left.
Sum the forces in the y direction:
∑F = ma
Fn + T sin θ − mg = 0
Fn = mg − T sin θ
Sum the forces in the x direction:
∑F = ma
T cos θ − Fn μ = 0
Fn μ = T cos θ
μ = T cos θ / Fn
μ = T cos θ / (mg − T sin θ)
Given T = 164 N, θ = 10.0°, m = 65.0 kg, and g = 9.8 m/s²:
μ = (164 N cos 10.0°) / (65.0 kg × 9.8 m/s² − 164 N sin 10.0°)
μ = 0.265
Answer: a = 1.32m/s2
Therefore, the average acceleration is 1.32m/s2
Explanation:
Acceleration is the rate of change in the velocity per time
a = change in velocity/time
a = ∆v/t
average acceleration a = (v2 -v1)/t. ....1
Given;
Final velocity v2 = 1.63m/s
Initial velocity v1 = -1.15ms
time taken t = 2.11s
Substituting into eqn 1
a = [1.63 - (-1.15)]/2.11
a = (1.63+1.15)/2.11
a = 2.78/2.11
a = 1.32m/s2
Therefore, the average acceleration is 1.32m/s2