Recall that
sin(<em>a</em> + <em>b</em>) = sin(<em>a</em>) cos(<em>b</em>) + cos(<em>a</em>) sin(<em>b</em>)
sin(<em>a</em> - <em>b</em>) = sin(<em>a</em>) cos(<em>b</em>) - cos(<em>a</em>) sin(<em>b</em>)
Adding these together gives
sin(<em>a</em> + <em>b</em>) + sin(<em>a</em> - <em>b</em>) = 2 sin(<em>a</em>) cos(<em>b</em>)
To get 14 cos(39<em>x</em>) sin(19<em>x</em>) on the right side, multiply both sides by 7 and replace <em>a</em> = 19<em>x</em> and <em>b</em> = 39<em>x</em> :
7 (sin(19<em>x</em> + 39<em>x</em>) + sin(19<em>x</em> - 39<em>x</em>)) = 14 cos(39<em>x</em>) sin(19<em>x</em>)
7 (sin(58<em>x</em>) + sin(-20<em>x</em>)) = 14 cos(39<em>x</em>) sin(19<em>x</em>)
7 (sin(58<em>x</em>) - sin(20<em>x</em>)) = 14 cos(39<em>x</em>) sin(19<em>x</em>)
Answer:
Just multiply 60 by 80
Step-by-step explanation:
Answer: m=−3
Step-by-step explanation: −40−2(3m+1/2)=7m−2
−40+(−2)(3m)+(−2)(1/2)=7m+−2
−40+−6m+−1=7m+−2
(−6m)+(−40+−1)=7m−2
−6m+−41=7m−2
−6m−41−7m=7m−2−7m
−13m−41+41=−2+41
−13m/−13=39/−13
m=−3
What mistake I guess Keith did make is he subtracted 2 from -39 which equaled to -37 which caused him divide -37 by 13 when it should have been 39 divided by 13 because he should have left 39 alone and not have subtracted 2 from it also it should not have been negative basically what I'm trying to say is that he did his division and subtraction wrong.
10 minutes. You see the dip or the part of the graph where it's lower than the other points? Look at how many minutes went past.