1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bess [88]
2 years ago
15

PLEASE SEND HELP WE DO NOT KNOW HOW TO DO THIS

Mathematics
1 answer:
Elena L [17]2 years ago
3 0

ever heard of gogle Answer:

coool bro but i dont rememeber asking

Explanation:

You might be interested in
Need help with this question 30 points and ill give brainlist ASAP
Zigmanuir [339]

Answer:

my answer is A. you only need substitute n from 1 to 4

3 0
3 years ago
What statement best demonstrates why the following is a NON-EXAMPLE of a polynomial?
madreJ [45]

Answer:

D

Step-by-step explanation:

If a function has x in the denominator, it cannot be a polynomial.

The rest of the options either don't apply to the equation, or are not rules for polynomials.

5 0
3 years ago
Deandre wants to earn at least $30 trimming trees. He charges $7 per hour and pays $5 in equipment fees. What are the possible n
exis [7]
8 hours for the possible numbers of house
5 0
3 years ago
Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint. (If an answer d
aliya0001 [1]

The Lagrangian

L(x,y,z,\lambda)=x^2+y^2+z^2+\lambda(x^4+y^4+z^4-13)

has critical points where the first derivatives vanish:

L_x=2x+4\lambda x^3=2x(1+2\lambda x^2)=0\implies x=0\text{ or }x^2=-\dfrac1{2\lambda}

L_y=2y+4\lambda y^3=2y(1+2\lambda y^2)=0\implies y=0\text{ or }y^2=-\dfrac1{2\lambda}

L_z=2z+4\lambda z^3=2z(1+2\lambda z^2)=0\implies z=0\text{ or }z^2=-\dfrac1{2\lambda}

L_\lambda=x^4+y^4+z^4-13=0

We can't have x=y=z=0, since that contradicts the last condition.

(0 critical points)

If two of them are zero, then the remaining variable has two possible values of \pm\sqrt[4]{13}. For example, if y=z=0, then x^4=13\implies x=\pm\sqrt[4]{13}.

(6 critical points; 2 for each non-zero variable)

If only one of them is zero, then the squares of the remaining variables are equal and we would find \lambda=-\frac1{\sqrt{26}} (taking the negative root because x^2,y^2,z^2 must be non-negative), and we can immediately find the critical points from there. For example, if z=0, then x^4+y^4=13. If both x,y are non-zero, then x^2=y^2=-\frac1{2\lambda}, and

xL_x+yL_y=2(x^2+y^2)+52\lambda=-\dfrac2\lambda+52\lambda=0\implies\lambda=\pm\dfrac1{\sqrt{26}}

\implies x^2=\sqrt{\dfrac{13}2}\implies x=\pm\sqrt[4]{\dfrac{13}2}

and for either choice of x, we can independently choose from y=\pm\sqrt[4]{\frac{13}2}.

(12 critical points; 3 ways of picking one variable to be zero, and 4 choices of sign for the remaining two variables)

If none of the variables are zero, then x^2=y^2=z^2=-\frac1{2\lambda}. We have

xL_x+yL_y+zL_z=2(x^2+y^2+z^2)+52\lambda=-\dfrac3\lambda+52\lambda=0\implies\lambda=\pm\dfrac{\sqrt{39}}{26}

\implies x^2=\sqrt{\dfrac{13}3}\implies x=\pm\sqrt[4]{\dfrac{13}3}

and similary y,z have the same solutions whose signs can be picked independently of one another.

(8 critical points)

Now evaluate f at each critical point; you should end up with a maximum value of \sqrt{39} and a minimum value of \sqrt{13} (both occurring at various critical points).

Here's a comprehensive list of all the critical points we found:

(\sqrt[4]{13},0,0)

(-\sqrt[4]{13},0,0)

(0,\sqrt[4]{13},0)

(0,-\sqrt[4]{13},0)

(0,0,\sqrt[4]{13})

(0,0,-\sqrt[4]{13})

\left(\sqrt[4]{\dfrac{13}2},\sqrt[4]{\dfrac{13}2},0\right)

\left(\sqrt[4]{\dfrac{13}2},-\sqrt[4]{\dfrac{13}2},0\right)

\left(-\sqrt[4]{\dfrac{13}2},\sqrt[4]{\dfrac{13}2},0\right)

\left(-\sqrt[4]{\dfrac{13}2},-\sqrt[4]{\dfrac{13}2},0\right)

\left(\sqrt[4]{\dfrac{13}2},0,\sqrt[4]{\dfrac{13}2}\right)

\left(\sqrt[4]{\dfrac{13}2},0,-\sqrt[4]{\dfrac{13}2}\right)

\left(-\sqrt[4]{\dfrac{13}2},0,\sqrt[4]{\dfrac{13}2}\right)

\left(-\sqrt[4]{\dfrac{13}2},0,-\sqrt[4]{\dfrac{13}2}\right)

\left(0,\sqrt[4]{\dfrac{13}2},\sqrt[4]{\dfrac{13}2}\right)

\left(0,\sqrt[4]{\dfrac{13}2},-\sqrt[4]{\dfrac{13}2}\right)

\left(0,-\sqrt[4]{\dfrac{13}2},\sqrt[4]{\dfrac{13}2}\right)

\left(0,-\sqrt[4]{\dfrac{13}2},-\sqrt[4]{\dfrac{13}2}\right)

\left(\sqrt[4]{\dfrac{13}3},\sqrt[4]{\dfrac{13}3},\sqrt[4]{\dfrac{13}3}\right)

\left(\sqrt[4]{\dfrac{13}3},\sqrt[4]{\dfrac{13}3},-\sqrt[4]{\dfrac{13}3}\right)

\left(\sqrt[4]{\dfrac{13}3},-\sqrt[4]{\dfrac{13}3},\sqrt[4]{\dfrac{13}3}\right)

\left(-\sqrt[4]{\dfrac{13}3},\sqrt[4]{\dfrac{13}3},\sqrt[4]{\dfrac{13}3}\right)

\left(\sqrt[4]{\dfrac{13}3},-\sqrt[4]{\dfrac{13}3},-\sqrt[4]{\dfrac{13}3}\right)

\left(-\sqrt[4]{\dfrac{13}3},\sqrt[4]{\dfrac{13}3},-\sqrt[4]{\dfrac{13}3}\right)

\left(-\sqrt[4]{\dfrac{13}3},-\sqrt[4]{\dfrac{13}3},\sqrt[4]{\dfrac{13}3}\right)

\left(-\sqrt[4]{\dfrac{13}3},-\sqrt[4]{\dfrac{13}3},-\sqrt[4]{\dfrac{13}3}\right)

5 0
3 years ago
There is a new student in class and you have been asked to teach them everything you know about coordinate planes. **Write at le
Simora [160]

Step-by-step explanation:

The coordinate plane is a two-dimension surface formed by two number lines. One number line is horizontal and is called the x-axis. The other number line is vertical number line and is called the y-axis. The two axes meet at a point called the origin. We can use the coordinate plane to graph points, lines

4 0
2 years ago
Other questions:
  • How do I simplify this? Please help
    11·1 answer
  • Evaluate in a clever way.<br><br>(7.07+70.007+7.0007+700)÷7
    5·2 answers
  • Answer this please I don't get it
    14·1 answer
  • An article in the National Geographic News ("U.S. Racking Up Huge Sleep Debt," February 24, 2005) argues that Americans are incr
    9·2 answers
  • How many different ways can Kevin set the switches
    6·1 answer
  • What is the solution to the equation -5= 8m+12 ?
    6·2 answers
  • Before lunch started the ratio of pizza to cookies is 5 to 6 and there was total of 99 pizzas and cookies
    11·1 answer
  • Find the area of the figure and choose the appropriate result.
    9·2 answers
  • X&gt;= -5 and y&gt;= -3 draw a graph with the following domain and range restrictions.
    9·1 answer
  • Question
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!