Answer:
Avoid Using too many statistics
Step-by-step explanation:
when a speaker is giving a speech, the listeners prefer main points to hearing too much of statistics. Too many statistics bore the audience and sometimes divert their attentions from the crux of the speech. If statistics are to be given, they must be clearly expressed and the source should be clearly stated.
Numbers that are of large decimal points can be rounded off so as not to confuse the audience and to make them grasp the main idea.
Answer:
The integrals was calculated.
Step-by-step explanation:
We calculate integrals, and we get:
1) ∫ x^4 ln(x) dx=\frac{x^5 · ln(x)}{5} - \frac{x^5}{25}
2) ∫ arcsin(y) dy= y arcsin(y)+\sqrt{1-y²}
3) ∫ e^{-θ} cos(3θ) dθ = \frac{e^{-θ} ( 3sin(3θ)-cos(3θ) )}{10}
4) \int\limits^1_0 {x^3 · \sqrt{4+x^2} } \, dx = \frac{x²(x²+4)^{3/2}}{5} - \frac{8(x²+4)^{3/2}}{15} = \frac{64}{15} - \frac{5^{3/2}}{3}
5) \int\limits^{π/8}_0 {cos^4 (2x) } \, dx =\frac{sin(8x} + 8sin(4x)+24x}{6}=
=\frac{3π+8}{64}
6) ∫ sin^3 (x) dx = \frac{cos^3 (x)}{3} - cos x
7) ∫ sec^4 (x) tan^3 (x) dx = \frac{tan^6(x)}{6} + \frac{tan^4(x)}{4}
8) ∫ tan^5 (x) sec(x) dx = \frac{sec^5 (x)}{5} -\frac{2sec^3 (x)}{3}+ sec x
Answer:
Slope is m= -1
Step-by-step explanation:
Use the slope formula to find the slope m
.
y=mx+b
Answer:
There are 59.66 inches in the circumference of the large pizza.
Step-by-step explanation:
It is given that:
Diameter of Joe's large pizza = 19 inches
Diameter = 2r
2r = 19
Circumference of large pizza = 2πr = 2r * π
Circumference of large pizza = 19*3.14
Circumference = 59.66 inches
Therefore,
There are 59.66 inches in the circumference of the large pizza.
Answer:
x ≈ {0.653059729092, 3.75570086464}
Step-by-step explanation:
A graphing calculator can tell you the roots of ...
f(x) = ln(x) -1/(x -3)
are near 0.653 and 3.756. These values are sufficiently close that Newton's method iteration can find solutions to full calculator precision in a few iterations.
In the attachment, we use g(x) as the iteration function. Since its value is shown even as its argument is being typed, we can start typing with the graphical solution value, then simply copy the digits of the iterated value as they appear. After about 6 or 8 input digits, the output stops changing, so that is our solution.
Rounded to 6 decimal places, the solutions are {0.653060, 3.755701}.
_____
A similar method can be used on a calculator such as the TI-84. One function can be defined a.s f(x) is above. Another can be defined as g(x) is in the attachment, by making use of the calculator's derivative function. After the first g(0.653) value is found, for example, remaining iterations can be g(Ans) until the result stops changing,