Given the table showing the distance Randy drove on one day of her vacation as follows:
![\begin{tabular} {|c|c|c|c|c|c|} Time (h)&1&2&3&4&5\\[1ex] Distance (mi)&55&110&165&220&275 \end{tabular}](https://tex.z-dn.net/?f=%5Cbegin%7Btabular%7D%0A%7B%7Cc%7Cc%7Cc%7Cc%7Cc%7Cc%7C%7D%0ATime%20%28h%29%261%262%263%264%265%5C%5C%5B1ex%5D%0ADistance%20%28mi%29%2655%26110%26165%26220%26275%0A%5Cend%7Btabular%7D)
The rate at which she travels is given by

If Randy has driven for one more hour at the same rate, the number of hours she must have droven is 6 hrs and the total distance is given by
distance = 55 x 6 = 330 miles.
Answer: c
Step-by-step explanation:
If the population triples every three hours, you would multiply three by the number of one hour to the power of three, making three hours. This function would triple it every three hours.
The value of y in
is 6/7
<h3>How to solve for y?</h3>
The equation is given as:

Open the bracket
-3 = 7y - 9
Add 9 to both sides of the equation
7y = 6
Divide both sides by 7
y= 6/7
Hence, the value of y in
is 6/7
Read more about equations at:
brainly.com/question/2972832
#SPJ1
<u>Complete question</u>
Solve for y

Answer:
Step-by-step explanation:
Sample proportion p is the proportion of favourable numbers to total number in the sample
By central limit theorem and also approximation of binomial to normal , we have sample proportion for large number of samples will be normal
with mean = sample proportion
and std deviation = 
Thus we find standard deviation of proportion sample is inversely proportional to the square of the sample size n.
It follows automatically that as sample size increases std deviation decreases.
Here from 80 sample size was made to 200
So std deviation would decrease automatically
Answer:
She did not correctly add up the numbers
Step-by-step explanation:
253 + 14 = 267