Using the Equation: PV=nRT
Where P is the pressure 60 cmHg or 600 mmHg or 600/760= 0.789 atm
V is the volume 125 ml or 0.125 L, n is the number of moles, R is a constant 0.082057, and T is temperature 25 °C or 298 K;
Therefore:
0.789 × 0.125 = n × 0.082057 × 298
n = 0.0987/24.45
= 0.004036 mol
0.004036 mole has a mass of 0.286 g
Hence; 1 mole has a mass of 0.286/0.004036
= 70.8 g /mol
Therefore the molar mass of the gas is 71 g/mol (2 sfg)
Http://geology.com/minerals/chromite.shtml
Chemical reactions involve the breaking of bonds and forming new bonds. All chemical reactions involves forming of new substances. For this, stuation, it is evident that a chemical reaction occur because a precipitate formed. Therefore the correct answer is stated in statement 1.
Answer:
The first thing we have to do is change and state all the units so that we can use our ideal gas law equation (
).
650 mmHg is a pressure unit, we have to convert this to kiloPascals. We know that 760 mmHg gives us 101 kPa.

P = 86kPa
T = 15°C + 273K = 288K
R (Gas constant) = 8.31 kj/mol
Molar mass of Ammonia (
) = (1 x 3) + (14) = 17g/mol
n (moles) =
3.34 mol
V = ?
Rearrange the equation to solve for Volume:

Substitute the values inside:
V = 
<u>Therefore 93 L of volume is occupied by the ammonia gas.</u>
<u></u>
Answer:
The water lost is 36% of the total mass of the hydrate
Explanation:
<u>Step 1:</u> Data given
Molar mass of CuSO4*5H2O = 250 g/mol
Molar mass of CuSO4 = 160 g/mol
<u>Step 2:</u> Calculate mass of water lost
Mass of water lost = 250 - 160 = 90 grams
<u>Step 3:</u> Calculate % water
% water = (mass water / total mass of hydrate)*100 %
% water = (90 grams / 250 grams )*100% = 36 %
We can control this by the following equation
The hydrate has 5 moles of H2O
5*18. = 90 grams
(90/250)*100% = 36%
(160/250)*100% = 64 %
The water lost is 36% of the total mass of the hydrate