The concentration of the reactants and products remain constant. Because the rates of the forward and reverse reaction are equal there is no net change to the amount of reactants or products produced.May 19, 2011
Answer:
Quantitative experiments show that 4.18 Joules of heat energy are required to raise the temperature of 1g of water by 1°C. Thus, a liter (1000g) of water that increased from 24 to 25°C has absorbed 4.18 J/g°C x 1000g x 1°C or 4180 Joules of energy.
2.50 x 2/1 = 5 mol of Citric Acid
5 x (3+72+5+112) = 960g of Citric Acid
Answer: 960g of Citric Acid
Answer:
edfgkvisiaixiicciciviicsiaiaqwododc
Answer:
1
Explanation:
For an ideal gas, the average kinetic energy is given by:
Ek = (3/2)*n*R*T
Where n is the number of moles, R is the gas constant (8.31 J/mol*K), and T the temperature. The gases have the same number of moles, and the same temperature, so they will have the same average kinetic energy:
Ek = (3/2)*1*8.31*300
Ek =3739.5 J
So, the ratio between then is 1.