1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
liraira [26]
3 years ago
10

(27/8)^1/3×[243/32)^1/5÷(2/3)^2]Simplify this question sir pleasehelpme​

Mathematics
2 answers:
gtnhenbr [62]3 years ago
6 0

Step-by-step explanation:

=  {( \frac{27}{8} )}^{ \frac{1}{3} }  \times ( \frac{243}{32} )^{ \frac{1}{5} }  \div  {( \frac{2}{3} )}^{2}

=  { ({ (\frac{3}{2} )}^{3}) }^{ \frac{1}{3} }  \times  {( {( \frac{3}{2}) }^{5} )}^{ \frac{1}{5} }  \div  {( \frac{2}{3} )}^{2}

=  {( \frac{3}{2} )}^{3 \times  \frac{1}{3} }  \times  {( \frac{3}{2} )}^{5 \times  \frac{1}{5} }  \times  {( \frac{3}{2} )}^{2}

=  \frac{3}{2}  \times  \frac{3}{2}  \times  {( \frac{3}{2} )}^{2}

=  {( \frac{3}{2} )}^{1 + 1 + 2}

=  {( \frac{3}{2} )}^{4} \:  or \:  \frac{81}{16}

Usimov [2.4K]3 years ago
3 0

\large\underline{\sf{Solution-}}

\sf{\longmapsto{\bigg( \dfrac{27}{8} \bigg)^{\frac{1}{3}} \times \Bigg[\bigg( \dfrac{243}{32} \bigg)^{\frac{1}{5}} \div \bigg(\dfrac{2}{3} \bigg)^{2}\Bigg]}} \\

We can write as :

27 = 3 × 3 × 3 = 3³

8 = 2 × 2 × 2 = 2³

243 = 3 × 3 × 3 × 3 × 3 = 3⁵

32 = 2 × 2 × 2 ×2 × 2 = 2⁵

\sf{\longmapsto{\bigg( \dfrac{3 \times 3 \times 3}{2 \times 2 \times 2} \bigg)^{\frac{1}{3}} \times \Bigg[\bigg( \dfrac{3 \times 3 \times 3 \times 3 \times 3}{2 \times 2 \times 2 \times 2 \times 2} \bigg)^{\frac{1}{5}} \div \bigg(\dfrac{2}{3} \bigg)^{2}\Bigg]}} \\

\sf{\longmapsto{\bigg( \dfrac{{(3)}^{3}}{{(2)}^{3}} \bigg)^{\frac{1}{3}} \times \Bigg[\bigg( \dfrac{({3}^{5})}{{(2)}^{5}} \bigg)^{\frac{1}{5}} \div \bigg(\dfrac{2}{3} \bigg)^{2}\Bigg]}} \\

Now, we can write as :

(3³/2³) = (3/2)³

(3⁵/2⁵) = (3/2)⁵

\sf{\longmapsto{\left\{\bigg(\frac{3}{2} \bigg)^{3}  \right\}^{\frac{1}{3}} \times \Bigg[\left\{\bigg(\frac{3}{2} \bigg)^{5} \right\}^{\frac{1}{5}} \div \bigg(\dfrac{2}{3} \bigg)^{2}\Bigg]}} \\

Now using law of exponent :

{\sf{({a}^{m})^{n} = {a}^{mn}}}

\sf{\longmapsto{\bigg( \frac{3}{2} \bigg)^{3 \times \frac{1}{3}} \times \Bigg[\bigg(\frac{3}{2}  \bigg)^{5 \times \frac{1}{5}} \div \bigg(\dfrac{2}{3} \bigg)^{2}\Bigg]}} \\

\sf{\longmapsto{\bigg( \frac{3}{2} \bigg)^{\frac{3}{3}} \times \Bigg[\bigg(\frac{3}{2}  \bigg)^{\frac{5}{5}} \div \bigg(\dfrac{2}{3} \bigg)^{2}\Bigg]}} \\

\sf{\longmapsto{\bigg( \frac{3}{2} \bigg)^{1} \times\Bigg[\bigg(\frac{3}{2}  \bigg)^{1} \div \bigg(\dfrac{2}{3} \bigg)^{2}\Bigg]}} \\

\sf{\longmapsto{\bigg( \frac{3}{2} \bigg)^{1} \times \Bigg[\bigg(\frac{3}{2}  \bigg)^{1} \times  \bigg(\dfrac{3}{2} \bigg)^{2}\Bigg]}} \\

\sf{\longmapsto{\bigg( \frac{3}{2} \bigg)^{1} \times \Bigg[\bigg(\frac{3}{2}  \bigg)^{1} \times  \bigg(\dfrac{3}{2} \times  \dfrac{3}{2} \bigg)\Bigg]}} \\

\sf{\longmapsto{\bigg( \dfrac{3}{2} \bigg)^{1} \times \Bigg[\bigg(\dfrac{3}{2}  \bigg)^{1} \times  \bigg(\dfrac{3 \times 3}{2 \times 2}\bigg)\Bigg]}} \\

\sf{\longmapsto{\bigg( \dfrac{3}{2} \bigg)^{1} \times \Bigg[\bigg(\dfrac{3}{2}  \bigg)^{1} \times  \bigg(\dfrac{9}{4}\bigg)\Bigg]}} \\

\sf{\longmapsto{\bigg( \frac{3}{2} \bigg)\times \Bigg[\bigg(\frac{3}{2}  \bigg)\times  \bigg(\dfrac{9}{4}\bigg)\Bigg]}} \\

\sf{\longmapsto{\bigg( \dfrac{3}{2} \bigg)\times \Bigg[ \:  \: \dfrac{3}{2}   \times \dfrac{9}{4} \:  \: \Bigg]}}\\

\sf{\longmapsto{\bigg( \dfrac{3}{2} \bigg)\times \Bigg[ \:  \: \dfrac{3 \times 9}{2 \times 4} \:  \: \Bigg]}} \\

\sf{\longmapsto{\bigg(\dfrac{3}{2} \bigg)\times \Bigg[ \:  \: \dfrac{27}{8} \:  \: \Bigg]}} \\

\sf{\longmapsto{\dfrac{3}{2} \times \dfrac{27}{8}}} \\

\sf{\longmapsto{\dfrac{3 \times 27}{2 \times 8}}} \\

\sf{\longmapsto{\dfrac{81}{16}}\: ≈ \:5.0625\:\red{Ans.}} \\

You might be interested in
The sail and mast of a sailboat form a right triangle.What is the height of the mast on the sailboat? height 20m width 12m
Mice21 [21]

Answer: 16 m

Step-by-step explanation:

Using the Pythagorean theorem you can find the height of the mast.

The formula is;

a² + b² = c²

a is one side of the triangle such as the width

b is another side such as the height

c is the hypotenuse which is the longest side.

c will therefore be 20m.

a will be 12m

12² + b² = 20²

b² = 400 - 144

b² = 256

b = √256

b = 16m

5 0
3 years ago
Guys help me with this question.
Vladimir79 [104]
100/-24 = -4 :)))))))
8 0
3 years ago
Write an equivalent expression for 6(x + 2) + 2
Alexxandr [17]

Answer: 6x + 14

Step-by-step explanation:

5 0
3 years ago
Pl help it’s for homework
Reika [66]
It’s D for your answer
6 0
3 years ago
Directions: Fill in the blank place value chat. Round to the nearest place value 2.431 what is the nearest whole number and the
sergejj [24]

Answer:

3,266.53

Rounded to the nearest 0.01 or

the Hundredths Place.

Step-by-step explanation:

4 0
3 years ago
Other questions:
  • Are we allowed to ask for web links?
    11·1 answer
  • A cylinder has a volume of 216π cubic feet and a height of 18 feet. What is the area of the base?
    14·2 answers
  • Some animals on farms eat hay to get energy. A cow can eat 24 pounds of hay each day. Write and evaluate an expression to find h
    7·1 answer
  • A number n minus 3 is at least –5
    9·2 answers
  • You start driving north for 35 miles, turn right, and drive east for another 12 miles. At the end of driving, what is your strai
    6·1 answer
  • 3/2 ( x - 2 ) - 5 = 19
    12·1 answer
  • Can anyone help me with this exercise?
    8·1 answer
  • What is the simplified expression for the expression below? 7(x – 4) – 3(x + 5)
    9·1 answer
  • This week, Philip spent 13 hours playing basketball, and 9 hours practicing his violin. What is the ratio of the hours spent pla
    6·1 answer
  • What percent are left hand dominant?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!