Answer:
1.
5
x
−
2
y
=
4
; (−1, 1)
2.
3
x
−
4
y
=
10
; (2, −1)
3.
−
3
x
+
y
=
−
6
; (4, 6)
4.
−
8
x
−
y
=
24
; (−2, −3)
5.
−
x
+
y
=
−
7
; (5, −2)
6.
9
x
−
3
y
=
6
; (0, −2)
7.
1
2
x
+
1
3
y
=
−
1
6
; (1, −2)
8.
3
4
x
−
1
2
y
=
−
1
; (2, 1)
9.
4
x
−
3
y
=
1
;
(
1
2
,
1
3
)
10.
−
10
x
+
2
y
=
−
9
5
;
(
1
5
,
1
10
)
11.
y
=
1
3
x
+
3
; (6, 3)
12.
y
=
−
4
x
+
1
; (−2, 9)
13.
y
=
2
3
x
−
3
; (0, −3)
14.
y
=
−
5
8
x
+
1
; (8, −5)
15.
y
=
−
1
2
x
+
3
4
;
(
−
1
2
,
1
)
16.
y
=
−
1
3
x
−
1
2
;
(
1
2
,
−
2
3
)
17.
y
=
2
; (−3, 2)
18.
y
=
4
; (4, −4)
19.
x
=
3
; (3, −3)
20.
x
=
0
; (1, 0)
Find the ordered pair solutions given the set of x-values.
21.
y
=
−
2
x
+
4
; {−2, 0, 2}
22.
y
=
1
2
x
−
3
; {−4, 0, 4}
23.
y
=
−
3
4
x
+
1
2
; {−2, 0, 2}
24.
y
=
−
3
x
+
1
; {−1/2, 0, 1/2}
25.
y
=
−
4
; {−3, 0, 3}
26.
y
=
1
2
x
+
3
4
; {−1/4, 0, 1/4}
27.
2
x
−
3
y
=
1
; {0, 1, 2}
28.
3
x
−
5
y
=
−
15
; {−5, 0, 5}
29.
–
x
+
y
=
3
; {−5, −1, 0}
30.
1
2
x
−
1
3
y
=
−
4
; {−4, −2, 0}
31.
3
5
x
+
1
10
y
=
2
; {−15, −10, −5}
32.
x
−
y
=
0
; {10, 20, 30}
Find the ordered pair solutions, given the set of y-values.
33.
y
=
1
2
x
−
1
; {−5, 0, 5}
34.
y
=
−
3
4
x
+
2
; {0, 2, 4}
35.
3
x
−
2
y
=
6
; {−3, −1, 0}
36.
−
x
+
3
y
=
4
; {−4, −2, 0}
37.
1
3
x
−
1
2
y
=
−
4
; {−1, 0, 1}
38.
3
5
x
+
1
10
y
=
2
; {−20, −10, −5}
Part B: Graphing Lines
Given the set of x-values {−2, −1, 0, 1, 2}, find the corresponding y-values and graph them.
39.
y
=
x
+
1
40.
y
=
−
x
+
1
41.
y
=
2
x
−
1
42.
y
=
−
3
x
+
2
43.
y
=
5
x
−
10
44.
5
x
+
y
=
15
45.
3
x
−
y
=
9
46.
6
x
−
3
y
=
9
47.
y
=
−
5
48.
y
=
3
Find at least five ordered pair solutions and graph.
49.
y
=
2
x
−
1
50.
y
=
−
5
x
+
3
51.
y
=
−
4
x
+
2
52.
y
=
10
x
−
20
53.
y
=
−
1
2
x
+
2
54.
y
=
1
3
x
−
1
55.
y
=
2
3
x
−
6
56.
y
=
−
2
3
x
+
2
57.
y
=
x
58.
y
=
−
x
59.
−
2
x
+
5
y
=
−
15
60.
x
+
5
y
=
5
61.
6
x
−
y
=
2
62.
4
x
+
y
=
12
63.
−
x
+
5
y
=
0
64.
x
+
2
y
=
0
65.
1
10
x
−
y
=
3
66.
3
2
x
+
5
y
=
30
Part C: Horizontal and Vertical Lines
Find at least five ordered pair solutions and graph them.
67.
y
=
4
68.
y
=
−
10
69.
x
=
4
70.
x
=
−
1
71.
y
=
0
72.
x
=
0
73.
y
=
3
4
74.
x
=
−
5
4
75. Graph the lines
y
=
−
4
and
x
=
2
on the same set of axes. Where do they intersect?
76. Graph the lines
y
=
5
and
x
=
−
5
on the same set of axes. Where do they intersect?
77. What is the equation that describes the x-axis?
78. What is the equation that describes the y-axis?
Part D: Mixed Practice
Graph by plotting points.
79.
y
=
−
3
5
x
+
6
80.
y
=
3
5
x
−
3
81.
y
=
−
3
82.
x
=
−
5
83.
3
x
−
2
y
=
6
84.
−
2
x
+
3
y
=
−
12
Step-by-step explanation:
1)
I:x-y=-7
II:x+y=7
add both equations together to eliminate y:
x-y+(x+y)=-7+7
2x=0
x=0
insert x=0 into II:
0+y=7
y=7
the solution is (0,7)
2)
I: 3x+y=4
II: 2x+y=5
add I+(-1*II) together to eliminate y:
3x+y+(-2x-y)=4+(-5)
x=-1
insert x=-1 into I:
3*-1+y=4
y=7
the solution is (-1,7)
3)
I: 2e-3f=-9
II: e+3f=18
add both equations together to eliminate f:
2e-3f+(e+3f)=-9+18
3e=9
e=3
insert e=3 into I:
2*3-3f=-9
-3f=-9-6
-3f=-15
3f=15
f=5
the solution is (3,5)
4)
I: 3d-e=7
II: d+e=5
add both equations together to eliminate e:
3d-e+(d+e)=7+5
4d=12
d=3
insert d=3 into II:
3+e=5
e=2
the solution is (3,2)
5)
I: 8x+y=14
II: 3x+y=4
add I+(-1*II) together to eliminate y
8x+y+(-3x-y)=14-4
5x=10
x=2
insert x=2 into II:
3*2+y=4
y=4-6
y=-2
the solution is (2,-2)
Answer:
Step-by-step explanation
Hello!
Be X: SAT scores of students attending college.
The population mean is μ= 1150 and the standard deviation σ= 150
The teacher takes a sample of 25 students of his class, the resulting sample mean is 1200.
If the professor wants to test if the average SAT score is, as reported, 1150, the statistic hypotheses are:
H₀: μ = 1150
H₁: μ ≠ 1150
α: 0.05
![Z= \frac{X[bar]-Mu}{\frac{Sigma}{\sqrt{n} } } ~~N(0;1)](https://tex.z-dn.net/?f=Z%3D%20%5Cfrac%7BX%5Bbar%5D-Mu%7D%7B%5Cfrac%7BSigma%7D%7B%5Csqrt%7Bn%7D%20%7D%20%7D%20~~N%280%3B1%29)

The p-value for this test is 0.0949
Since the p-value is greater than the level of significance, the decision is to reject the null hypothesis. Then using a significance level of 5%, there is enough evidence to reject the null hypothesis, then the average SAT score of the college students is not 1150.
I hope it helps!
I dont completely know but it might be 3