The dimensions and volume of the largest box formed by the 18 in. by 35 in. cardboard are;
- Width ≈ 8.89 in., length ≈ 24.89 in., height ≈ 4.55 in.
- Maximum volume of the box is approximately 1048.6 in.³
<h3>How can the dimensions and volume of the box be calculated?</h3>
The given dimensions of the cardboard are;
Width = 18 inches
Length = 35 inches
Let <em>x </em>represent the side lengths of the cut squares, we have;
Width of the box formed = 18 - 2•x
Length of the box = 35 - 2•x
Height of the box = x
Volume, <em>V</em>, of the box is therefore;
V = (18 - 2•x) × (35 - 2•x) × x = 4•x³ - 106•x² + 630•x
By differentiation, at the extreme locations, we have;

Which gives;

6•x² - 106•x + 315 = 0

Therefore;
x ≈ 4.55, or x ≈ -5.55
When x ≈ 4.55, we have;
V = 4•x³ - 106•x² + 630•x
Which gives;
V ≈ 1048.6
When x ≈ -5.55, we have;
V ≈ -7450.8
The dimensions of the box that gives the maximum volume are therefore;
- Width ≈ 18 - 2×4.55 in. = 8.89 in.
- Length of the box ≈ 35 - 2×4.55 in. = 24.89 in.
- The maximum volume of the box, <em>V </em><em> </em>≈ 1048.6 in.³
Learn more about differentiation and integration here:
brainly.com/question/13058734
#SPJ1
The train is traveling at 57 miles per hour.
(1/3) × the cone's volume = The cylinder's volume.
Step-by-step explanation:
Step 1:
The volume of any cone is obtained by multiplying
with π, the square of the radius (
) and the height (
).
So the volume of the cone,
.
Step 2:
The cylinder's volume is nearly the same as the cone but instead by multiplying
we multiply with 1.
So the cylinder's volume is determined by multiplying π with the square of the radius of the cylinder (
) and the height of the cylinder (
).
So the the cone's volume,
.
Step 3:
Now we equate both the volumes to each other.
The cone's volume : The cylinder's volume =
=
.
So if we multiply the cone's volume with
we will get the cylinder's volume with the same dimensions.
Answer:
x ≥ - 1
Step-by-step explanation:
Answer:
- y = 0.937976x +12.765
- $12,765
- $31,524
- the cost increase each year
Step-by-step explanation:
1. For this sort of question a graphing calculator or spreadsheet are suitable tools. The attached shows the linear regression line to have the equation ...
... y = 0.937976x + 12.765
where x is years since 2000, and y is average tuition cost in thousands.
2. The y-intercept is the year-2000 tuition: $12,765.
3. Evaluating the formula for x=20 gives y ≈ 31.524, so the year-2020 tuition is expected to be $31,524.
4. The slope is the rate of change of tuition with respect to number of years. It is the average increase per year (in thousands). It amounts to about $938 per year.
5. [not a math question]