Answer:
kkk
kkkkkkkkkkkkkkkkk
Step-by-step explanation:
kkk
k
The mean is 0.0118 approximately. So option C is correct
<h3><u>Solution:</u></h3>
Given that , The probability of winning a certain lottery is
for people who play 908 times
We have to find the mean number of wins

Assume that a procedure yields a binomial distribution with a trial repeated n times.
Use the binomial probability formula to find the probability of x successes given the probability p of success on a single trial.



Hence, the mean is 0.0118 approximately. So option C is correct.
Answer:
A link for a calculator that I use for ratios
Step-by-step explanation:
https://www.calculatorsoup.com/calculators/math/ratios.php
Answer:
Opposites are basically the negative and positive of a number. I cannot think of something for a real world situation though.
Step-by-step explanation:
Answer:
0.7102
0.8943
0.3696
Step - by - Step Explanation :
A.) Between $1320 and $970
P(Z < 1300) - P(Z < 970)
find the Zscore of each scores and their corresponding probability uinag the standard distribution table :
P(Z < (x - μ) /σ) - P(Z < (x - μ) / σ))
P(Z < (1320 - 1250) /120) - P(Z < (970 - 1250) / 120))
P(Z < 0.5833) - P(Z < - 2.333)
0.7200 - 0.0098 = 0.7102 (Standard
=0.7102
B.)Under 1400
x = 1400
P(Z < 400)
P(Z < (x - μ) /σ)
P(Z < (1400 - 1250) /120)
P(Z < 1.25) = 0.8943
C.) Over 1290
P(Z > 1290)
P(Z < (x - μ) /σ)
P(Z > (1290 - 1250) /120 = 0.3333
P(Z > z) = 1 - P(Z < 0.3333) = P(Z < 0.3333) = 0.6304
P(Z > 0.3333) = 1 - 0.6304 = 0.3696