The vacuoles are the answer
2Ca3(PO4)2 + 6SiO2 + 10C ---> P4 + 6CaSiO3 + 10CO
1 mole of Ca3(PO4)2 = 310g
1 mole of P4 = 124g
according to the reaction:
2*310g Ca3(PO4)2----------------124g P4
x g Ca3(PO4)2 ------------------------ 30g P4
x = 150g Ca3(PO4)2
so, your answer is good
The aufbau principle, from the German Aufbauprinzip (building-up principle), also called the aufbau rule, states that in the ground state of an atom or ion, electrons fill atomic orbitals of the lowest available energy levels before occupying higher levels.
Answer:
(1) Bromination, (2) E2 elimination and (3) epoxidation
Explanation:
- In the first step, -OH group in cyclopentanol is replaced by more facile leaving group Br by treating cyclopentanol with

- In the second step, E2 elimination in presence of strong base e.g. NaOEt/EtOH produce cyclopentene
- In the third step, treatment of cyclopentene with mCPBA produces 1,2-epoxycyclopentane
- Full reaction scheme has been shown below
Answer:
is the maximum velocity of this reaction.
Explanation:
Michaelis–Menten 's equation:
![v=V_{max}\times \frac{[S]}{K_m+[S]}=k_{cat}[E_o]\times \frac{[S]}{K_m+[S]}](https://tex.z-dn.net/?f=v%3DV_%7Bmax%7D%5Ctimes%20%5Cfrac%7B%5BS%5D%7D%7BK_m%2B%5BS%5D%7D%3Dk_%7Bcat%7D%5BE_o%5D%5Ctimes%20%5Cfrac%7B%5BS%5D%7D%7BK_m%2B%5BS%5D%7D)
![V_{max}=k_{cat}[E_o]](https://tex.z-dn.net/?f=V_%7Bmax%7D%3Dk_%7Bcat%7D%5BE_o%5D)
v = rate of formation of products =
[S] = Concatenation of substrate
= Michaelis constant
= Maximum rate achieved
= Catalytic rate of the system
= Initial concentration of enzyme
We have :


![[S]=0.110 mol/dm^3](https://tex.z-dn.net/?f=%5BS%5D%3D0.110%20mol%2Fdm%5E3)
![v=V_{max}\times \frac{[S]}{K_m+[S]}](https://tex.z-dn.net/?f=v%3DV_%7Bmax%7D%5Ctimes%20%5Cfrac%7B%5BS%5D%7D%7BK_m%2B%5BS%5D%7D)
![1.15\times 10^{-3} mol/dm^3 s=V_{max}\times \frac{0.110 mol/dm^3}{[(0.045 mol/dm^3)+(0.110 mol/dm^3)]}](https://tex.z-dn.net/?f=1.15%5Ctimes%2010%5E%7B-3%7D%20mol%2Fdm%5E3%20s%3DV_%7Bmax%7D%5Ctimes%20%5Cfrac%7B0.110%20mol%2Fdm%5E3%7D%7B%5B%280.045%20mol%2Fdm%5E3%29%2B%280.110%20mol%2Fdm%5E3%29%5D%7D)
![V_{max}=\frac{1.15\times 10^{-3} mol/dm^3 s\times [(0.045 mol/dm^3)+(0.110 mol/dm^3)]}{0.110 mol/dm^3}=1.620\times 10^{-3} mol/dm^3 s](https://tex.z-dn.net/?f=V_%7Bmax%7D%3D%5Cfrac%7B1.15%5Ctimes%2010%5E%7B-3%7D%20mol%2Fdm%5E3%20s%5Ctimes%20%5B%280.045%20mol%2Fdm%5E3%29%2B%280.110%20mol%2Fdm%5E3%29%5D%7D%7B0.110%20mol%2Fdm%5E3%7D%3D1.620%5Ctimes%2010%5E%7B-3%7D%20mol%2Fdm%5E3%20s)
is the maximum velocity of this reaction.