Answer:
V=0.68L
Explanation:
For this question we can use
V1/T1 = V2/T2
where
V1 (initial volume )= 0.75 L
T1 (initial temperature in Kelvin)= 303.15
V2( final volume)= ?
T2 (final temperature in Kelvin)= 273.15
Now we must rearrange the equation to make V2 the subject
V2= (V1/T1) ×T2
V2=(0.75/303.15) ×273.15
V2=0.67577931717
V2= 0.68L
If a sample of gas is a 0.622-gram, volume of 2.4 L at 287 K and 0.850 atm. Then the molar mass of the gas is 7.18 g/mol
<h3>What is an ideal gas equation?</h3>
The ideal gas law (PV = nRT) relates to the macroscopic properties of ideal gases.
An ideal gas is a gas in which the particles (a) do not attract or repel one another and (b) take up no space (have no volume).
Given :
The ideal gas equation is given below.
n = PV/RT
n = 86126.25 x 0.0024 / 8.314 x 287
n = 0.622 / molar mass (n = Avogardos number)
Molar mass = 7.18 g
Hence, the molar mass of a 0.622-gram sample of gas having a volume of 2.4 L at 287 K and 0.850 atm is 7.18 g
More about the ideal gas equation link is given below.
brainly.com/question/4147359
#SPJ1
<span>A sample that weighs 107.75 g is a mixture of 30% helium atoms and 70% krypton atoms. How many particles are present in the sample? </span>3.59
2C3H8+ 702--->6CO2+8H20
FROM Equation above 2 moles of C3H8 reacted with 7 moles of oxygen to form 6 moles of c02 plus 8 molesof H2O
the moles of c3H8 reacted is = MASS/ R.F.M
THE R.F.M =48+8=44
Number of moles is hence 0.025/44=5.68x10^-4
since ratio of C3H8 to O2 is 2:7 Therefore moles of O2 reacted is 1.989 x10^-3
mass= r.f.m x number of moles
(1.989x10^-3) x 32 =0.064g
Answer:
It is important for scientists to form a consensus on scientific issues because scientific consensus tells us things that we have already learned.