To get the maximum height, we first determine the time at which this maximum height is attained by differentiating the given equation and equating the differential to zero.
h(t) = -0.2t² + 2t
Differentiating,
dh(t) = -(0.2)(2)t + 2 = 0
The value of t is equal to 5. Substituting this time to the original equation,
h(t) = -0.2(5²) + 2(5) = 5 ft
Thus, the maximum height is 5 ft and since it will take 5 seconds for it to reach the maximum height, the total time for it to reach the ground is 10 seconds.
Answers: maximum height = 5 ft
time it will reach the ground = 10 s
Answer:
0.60
Step-by-step explanation:
find the probability it is a 2:
0.40 / 1 = 0.4 or 40%
find the probability it isn't a 2:
1 - 0.4 = 0.6
Your answer would be, C 5/45 and 4/36. In simplified form they both equal 1/9, meaning they are a proportion.
Hello! The answer would be,
38.4
Since if you do 24x0.6 you would get 14.4 which then you would add
14.4 with 24 and get 38.4
Hope I've helped and feel free to ask me questions!
Sincerely, Kaylie :)
Answer:
Step-by-step explanation:
The complete question is
Water flows into a tank according to the rate F(t)= (t+6)/(1+t), and at the same time empties out at the rate E(t)= (ln(t+2))/(t+1), with both F(t) and E(t) measured in gallons per minute. How much water, to the nearest galllon, is in the tank at time t=10 minutes.
Let C(t) be the amount of water in the tank at time t. We now that the rate of change of the tank is given by
![\frac{dC}{dt}=[\tex]rate at which water flows in- rate at which water flows out. Then [tex]\frac{dC}{dt}=\frac{t+6}{t+1}-\frac{\ln(t+2)}{(t+1)}[\tex]so, the desired expression is obtained by integrating with respect to t. This leads us to [tex]C(t) = \int \frac{t+1}{t+1}+ \frac{5}{t+1} - \frac{\ln(t+2)}{(t+1)} dt=t+ 5 \ln (|t+1|)-\int \frac{\ln(t+2)}{(t+1)} dt +C](https://tex.z-dn.net/?f=%5Cfrac%7BdC%7D%7Bdt%7D%3D%5B%5Ctex%5Drate%20at%20which%20water%20flows%20in-%20rate%20at%20which%20water%20flows%20out.%20%3C%2Fp%3E%3Cp%3EThen%20%3C%2Fp%3E%3Cp%3E%5Btex%5D%5Cfrac%7BdC%7D%7Bdt%7D%3D%5Cfrac%7Bt%2B6%7D%7Bt%2B1%7D-%5Cfrac%7B%5Cln%28t%2B2%29%7D%7B%28t%2B1%29%7D%5B%5Ctex%5D%3C%2Fp%3E%3Cp%3Eso%2C%20the%20desired%20expression%20is%20obtained%20by%20integrating%20with%20respect%20to%20t.%20%3C%2Fp%3E%3Cp%3EThis%20leads%20us%20to%20%3C%2Fp%3E%3Cp%3E%5Btex%5DC%28t%29%20%20%3D%20%5Cint%20%5Cfrac%7Bt%2B1%7D%7Bt%2B1%7D%2B%20%5Cfrac%7B5%7D%7Bt%2B1%7D%20-%20%5Cfrac%7B%5Cln%28t%2B2%29%7D%7B%28t%2B1%29%7D%20dt%3C%2Fp%3E%3Cp%3E%3Dt%2B%205%20%5Cln%20%28%7Ct%2B1%7C%29-%5Cint%20%5Cfrac%7B%5Cln%28t%2B2%29%7D%7B%28t%2B1%29%7D%20dt%20%2BC)
Unfortunately, the integral
cannot be expressed using fundamental functions. So, the problem cannot have an specific function (if you are willing to know the complete answer, the integral of this function uses the polylogarithm function with n=2).
Since you want the exact amount of water at time, you need to give C a value, that is, you need to know an initial condition for the problem. This means, you need to know the amount of water in the tank at time 0