I assume that the parabola in this particular problem is one whose axis of symmetry is parallel to the y axis. The formula we're going to use in this case is (x-h)2=4p(y-k). We know variables h and k from the vertex (1,20) but p is not given. However, we can solve for p by substituting values x and y in the formula with the y-intercept:
(0-1)^2=4p(16-20)
Solving for p, p=-1/16.
Going back to the formula, we can finally solve for the x-intercepts. Simply fill in variables p, h and k then set y to zero:
(x-1)^2=4(-1/16)(0-20)
(x-1)^2=5
x-1=(+-)sqrt(5)
x=(+-)sqrt(5)+1
Here, we have two values of x
x=sqrt(5)+1 and
x=-sqrt(5)+1
thus, the answers are: (sqrt(5)+1,0) and (-sqrt(5)+1,0).
i need more info. Is this the whole question?
Answer:
400 lb of salt
Step-by-step explanation:
Let us assume the water flows into the rank for x minutes.
There is an initial of 1000 gallons of water in the tank and water flows in through one pipe at 4 gal/min and through another pipe at 6 gal/min. In x minute, the amount of water in the tank = 1000 + 4x + 6x = 1000 + 10x
Water flows out at 5 gal/min, therefore in x minute the amount of water in the tank = 1000 + 10x - 5x = 1000 + 5x
The tank begins to overflow when it is full (has reached 1500 gallons). Therefore:
1500 = 1000 + 5x
5x = 1500 - 1000
5x = 500
x = 100 minutes.
1/2 lb salt per gallon flows into the tank at 4 gal/min and 1/3 lb of salt is flowing in at 6 gal/min, in 100 min the amount of salt that entered the tank = 4 gal/min × 100 min × 1/2 lb/gal + 6 gal/min × 100 min × 1/3 lb/gal= 400 lb
Therefore the amount of salt is in the tank when it is about to overflow = 400 lb of salt
Answer:
the first answer
Step-by-step explanation: