Answer:
Explanation:
First convert the grams of Calcium Bromide to moles by using the atomic weight. Then use the formula for molarity, which is moles per liter.
CaBr2 = 199.9 g/mol
10/199.9 = 0.05 moles of CaBr2

x = 0.1L or 100mL
Original molarity was 1.7 moles of NaCl
Final molarity was 0.36 moles of NaCl
Given Information:
Original (concentrated) solution: 25 g NaCl in a 250 mL solution, solve for molarity
Final (diluted) solution: More water is added to make the new total volume 1.2 liters, solve for the new molarity
1. Solve for the molarity of the original (concentrated) solution.
Molarity (M) = moles of solute (mol) / liters of solution (L)
Convert the given information to the appropriate units before plugging in and solving for molarity.
Molarity (M) = 0.43 mol NaCl solute / 0.250 L solution = 1.7 M NaCl (original solution)
2. Solve for the molarity of the final (diluted) solution.
Remember that the amount of solute remains constant in a dilution problem; it is just the total volume of the solution that changes due to the addition of solvent.
Molarity (M) = 0.43 mol NaCl solute / 1.2 L solution
Molarity (M) of the final solution = 0.36 M NaCl
I hope this helped:))
Answer:
In chemistry, a single bond is a chemical bond between two atoms involving two valence electrons. That is, the atoms share one pair of electrons where the bond forms. Therefore, a single bond is a type of covalent bond.
Explanation:
(copied from Google)
Use a magnet to separate the iron from the sand.
Answer:
Its 1s22s22p63s23p1 ik it looks a lil goofy but i think its right
Explanation: