The decision rule for rejecting the null hypothesis, considering the t-distribution, is of:
- |t| < 1.9801 -> do not reject the null hypothesis.
- |t| > 1.9801 -> reject the null hypothesis.
<h3>What are the hypothesis tested?</h3>
At the null hypothesis, it is tested if there is not enough evidence to conclude that the mean voltage for these two types of batteries is different, that is, the subtraction of the sample means is of zero, hence:

At the alternative hypothesis, it is tested if there is enough evidence to conclude that the mean voltage for these two types of batteries is different, that is, the subtraction of the sample means different of zero, hence:

We have a two-tailed test, as we are testing if the mean is different of a value.
Considering the significance level of 0.05, with 75 + 46 - 2 = 119 df, the critical value for the test is given as follows:
|t| = 1.9801.
Hence the decision rule is:
- |t| < 1.9801 -> do not reject the null hypothesis.
- |t| > 1.9801 -> reject the null hypothesis.
More can be learned about the t-distribution in the test of an hypothesis at brainly.com/question/13873630
#SPJ1
9514 1404 393
Answer:
D. (-3, -2)
Step-by-step explanation:
The equations have different coefficients for x and y, so will have one solution. The solutions offered are easily tested in either equation.
Using (x, y) = (-2, -3):
x = y -1 ⇒ -2 = -3 -1 . . . . False
Using (x, y) = (-3, -2):
x = y -1 ⇒ -3 = -2 -1 . . . .True
2x = 3y ⇒ 2(-3) = 3(-2) . . . . True
The solution is (-3, -2).
__
If you'd like to solve the set of equations, substitution for x works nicely.
2(y -1) = 3y
2y -2 = 3y . . eliminate parentheses
-2 = y . . . . . . subtract 2y
x = -2 -1 = -3
The solution is (x, y) = (-3, -2).
32 as well according to some rule in geometry
I think in the first sentence, that should have been 3/4 instead of 34. Total amount of steak bought (lb)
total amount = (3/4 lb/steak)(12 steak) = 9 lb
To find the total amount that Silvia spends for each pound of steak, we divide $90 by 9 and that will give us an answer of $10.