A ) 5x^3 - 6x^4
B ) 11x^4 - 13x^3
C ) 14^x3 - 2x^4
D ) 2x^4 - 12x^3
E) 5x^4 - 3x^3
I believe this is all right!
Interesting that only integrals along the
-axis are suggested when integrating along the
-axis would be much simpler... Anyway, you have to split the interval of integration into two. The "height" of the region is not uniform over the entire interval.
When
, we have
. When
, we have
. Then the area we want is given by

which seems to agree with the last option.
Answer:
Mean = 4.8875
Median = 4.6
Mode = 4.5 and 7.7
Step-by-step explanation:
Mean is the sum of total of data divided by the sample size
Sum total = 1.5 + 4.7 + 6 + 7.7 + 7.7 + 4.5 + 2.5 + 4.5
Sum total = 39.1
Sample size = 8
Mean = 39.1/8
Mean = 4.8875
To get the median we need to first rearrange
1.5, 2.5, 4.5, 4.5, 4.7, 6, 7.7, 7.7
Median = 4.5 + 4.7/2
Median = 4.6
Hence the median is 4.6
Mode is the value occuring the most. Since 4.5 and 7.7 both occurs twice, hence the mode of the data is 4.5 and 7.7
Answer:

Step-by-step explanation:
Given: 
To convert: the given sum into product
Solution:
Use formula: 
![cosx + cos3x + cos5x + cos7x=2\cos \left ( \frac{x+3x}{2} \right )\cos \left ( \frac{x-3x}{2} \right )+2\cos \left ( \frac{5x+7x}{2} \right )\cos \left ( \frac{5x-7x}{2} \right )\\=2\cos (2x)\cos (-x)+2\cos (6x)\cos (-x)\\=2\cos (2x)\cos (x)+2\cos (6x)\cos (x)\\=2\cos x\left [ \cos (2x)+\cos (6x) \right ]](https://tex.z-dn.net/?f=cosx%20%2B%20cos3x%20%2B%20cos5x%20%2B%20cos7x%3D2%5Ccos%20%5Cleft%20%28%20%5Cfrac%7Bx%2B3x%7D%7B2%7D%20%5Cright%20%29%5Ccos%20%5Cleft%20%28%20%5Cfrac%7Bx-3x%7D%7B2%7D%20%5Cright%20%29%2B2%5Ccos%20%5Cleft%20%28%20%5Cfrac%7B5x%2B7x%7D%7B2%7D%20%5Cright%20%29%5Ccos%20%5Cleft%20%28%20%5Cfrac%7B5x-7x%7D%7B2%7D%20%5Cright%20%29%5C%5C%3D2%5Ccos%20%282x%29%5Ccos%20%28-x%29%2B2%5Ccos%20%286x%29%5Ccos%20%28-x%29%5C%5C%3D2%5Ccos%20%282x%29%5Ccos%20%28x%29%2B2%5Ccos%20%286x%29%5Ccos%20%28x%29%5C%5C%3D2%5Ccos%20x%5Cleft%20%5B%20%5Ccos%20%282x%29%2B%5Ccos%20%286x%29%20%5Cright%20%5D)
![cosx + cos3x + cos5x + cos7x=2\cos \left ( \frac{x+3x}{2} \right )\cos \left ( \frac{x-3x}{2} \right )+2\cos \left ( \frac{5x+7x}{2} \right )\cos \left ( \frac{5x-7x}{2} \right )\\=2\cos x\left [ \cos (2x)+\cos (6x) \right ]\\=2\cos x\left [2 \cos \left ( \frac{2x+6x}{2} \right )\cos \left ( \frac{2x-6x}{2} \right ) \right ]\\=2\cos x\left [ 2\cos (4x) \cos (-2x) \right ]\\=4\cos x\cos (4x)\cos (2x)](https://tex.z-dn.net/?f=cosx%20%2B%20cos3x%20%2B%20cos5x%20%2B%20cos7x%3D2%5Ccos%20%5Cleft%20%28%20%5Cfrac%7Bx%2B3x%7D%7B2%7D%20%5Cright%20%29%5Ccos%20%5Cleft%20%28%20%5Cfrac%7Bx-3x%7D%7B2%7D%20%5Cright%20%29%2B2%5Ccos%20%5Cleft%20%28%20%5Cfrac%7B5x%2B7x%7D%7B2%7D%20%5Cright%20%29%5Ccos%20%5Cleft%20%28%20%5Cfrac%7B5x-7x%7D%7B2%7D%20%5Cright%20%29%5C%5C%3D2%5Ccos%20x%5Cleft%20%5B%20%5Ccos%20%282x%29%2B%5Ccos%20%286x%29%20%5Cright%20%5D%5C%5C%3D2%5Ccos%20x%5Cleft%20%5B2%20%5Ccos%20%5Cleft%20%28%20%5Cfrac%7B2x%2B6x%7D%7B2%7D%20%5Cright%20%29%5Ccos%20%5Cleft%20%28%20%5Cfrac%7B2x-6x%7D%7B2%7D%20%5Cright%20%29%20%5Cright%20%5D%5C%5C%3D2%5Ccos%20x%5Cleft%20%5B%202%5Ccos%20%284x%29%20%5Ccos%20%28-2x%29%20%5Cright%20%5D%5C%5C%3D4%5Ccos%20x%5Ccos%20%284x%29%5Ccos%20%282x%29)
Answer:
The third option: x= 
Step-by-step explanation:
Arc length formula=
Arc length = 
=