Answer:
The approximate percentage of SAT scores that are less than 865 is 16%.
Step-by-step explanation:
The Empirical Rule states that, for a normally distributed random variable:
Approximately 68% of the measures are within 1 standard deviation of the mean.
Approximately 95% of the measures are within 2 standard deviations of the mean.
Approximately 99.7% of the measures are within 3 standard deviations of the mean.
In this problem, we have that:
Mean of 1060, standard deviation of 195.
Empirical Rule to estimate the approximate percentage of SAT scores that are less than 865.
865 = 1060 - 195
So 865 is one standard deviation below the mean.
Approximately 68% of the measures are within 1 standard deviation of the mean, so approximately 100 - 68 = 32% are more than 1 standard deviation from the mean. The normal distribution is symmetric, which means that approximately 32/2 = 16% are more than 1 standard deviation below the mean and approximately 16% are more than 1 standard deviation above the mean. So
The approximate percentage of SAT scores that are less than 865 is 16%.
3(x-6)(x+2)
hope this helps
Answer:

Step-by-step explanation:
we are given equation as

Since, we have to solve it by using complete square
so, firstly we will complete square
and then we can solve for x
step-1:
Factor 2 from both sides

step-2:
Simplify it

step-3:
Add both sides 3^2

now, we can complete square

step-4:
Take sqrt both sides

step-5:
Add both sides by 3
we get

Answer:
119
Step-by-step explanation:
Divided by x and y for total engagement of relationship between two beings of equation.