Answer:
F' corresponds to point F
Step-by-step explanation:
When a point is the result of some transformation, we often designate that result using the base name of the original, with a prime (') added. In this case, we expect that F' is the transformation of point F.
__
<em>Comment on point naming</em>
Of course, points can be given any name you like. These conventions are adopted to aid in communication about transformations and correspondence between points. It would be unusual--even confusing, but not unreasonable, for point F' to correspond to point D, for example. In the case of certain transformations, point F' may actually <em>be</em> point D.
Answer:
it is 2
Step-by-step explanation:
i think it is
Answer:y=negative 1 over 3x +2
Step-by-step explanation:
Answer: The answer is (d) ⇒ cscx = √3
Step-by-step explanation:
∵ sinx + (cotx)(cosx) = √3
∵ sinx + (cosx/sinx)(cosx) = √3
∴ sinx + cos²x/sinx = √3
∵ cos²x = 1 - sin²x
∴ sinx + (1 - sin²x)/sinx = √3 ⇒ make L.C.M
∴ (sin²x + 1 - sin²x)/sinx = √3
∴ 1/sinx = √3
∵ 1/sinx = cscx
∴ cscx = √3
Answer:
elimination
Step-by-step explanation: