At the smallest level of organization, the DNA wraps itself around small globular proteins called histones. Complexes of histones and DNA form nucleosomes, which appear as "beads" on the DNA strand. Chromatin refers to the decondensed DNA that has not formed separate chromosomes.
Answer:
The reduced form of cytochrome c more likely to give up its electron to oxidized cytochrome a having a higher reduction potential.
Explanation:
Electrons from NADH and FADH2 flow spontaneously from one electron carrier of the electron transport chain to the other. This occurs since the proteins of the ETC are present in the order of increasing reduction potential. The reduced cytochrome b has lower reduction potential than cytochrome c1 which in turn has a lower reduction potential than the cytochrome c.
Cytochrome c is a soluble protein and its single heme accepts an electron from cytochrome b of the Complex III. Now, cytochrome c moves to complex IV which has higher reduction potential and donates the electron to cytochrome a which in turn passes the electrons to O2 via cytochrome a3.
Answer:
TRUE
Explanation:
By the end of meiosis, the resulting reproductive cells, or gametes, each have 23 genetically unique chromosomes. The overall process of meiosis produces four daughter cells from one single parent cell. Each daughter cell is haploid, because it has half the number of chromosomes as the original parent cell
it is not possible to access your whole brain.