Answer:Silicon is neither metal nor non-metal; it's a metalloid, an element that falls somewhere between the two. The category of metalloid is something of a gray area, with no firm definition of what fits the bill, but metalloids generally have properties of both metals and non-metals.
Explanation:
Answer:
Oxidation is the loss of electrons, that is, addition of electronegetive elements, example is addition of oxygen. Also, removal of electropositive elements, example is removal of hydrogen.
Explanation: a) In the presence of excess oxygen, propane burns in air, which gives the following chemical equation:
C3H8 + 5O2⇒ 3CO2 + 4H2O +Heat
b) When insufficient oxygen or too much oxygen is present for complete combustion, the following equation is given:
2C3H8 + 9O2 ⇒ 4CO2 + 2CO + 8H2O + Heat
c) At the anode( negative terminal): O∧2- ⇒ O + e
Oxygen accepts electron.
d) At cathode ( positive terminal): H∧+ + e∧- ⇒ H
Hydrogen donates electron
d) Nernst equation for reversal potential is given as follows:
E= RT/zF In{ion outside cell}/{ion inside cell}= 2.303 RT/zF In{ion outside cell}/{ion inside cell}
Answer:
Because , the advantage of steam distillation over simple distillation is that the lower boiling point reduces decomposition of temperature-sensitive compounds. Steam distillation is useful for the purification of organic compounds, although vacuum distillation is more common
Explanation:
Answer: Flammability is a material's ability to burn in the presence of oxygen.
Explanation: Chemical properties can be observed only when the substance changes into one or more different substances through chemical reactions or transformations. One of the chemical properties is flammability.
Flammability is a material's ability to burn in the presence of oxygen.
Remember, oxygen doesn't burn. Precisely flammable substances obtain substances that burn. Oxygen remains an oxidizing agent, which means it supports the combustion process. Oxygen causes other objects to catch fire at low temperatures and burns hotter and faster. But oxygen itself does not burn. Consequently, if you at present deliver fuel and fire, adding oxygen will provide the fire.
Carbon dioxide is the result of combustion. An example can be seen in firewood in a fireplace. One of the chemical properties of carbon-based wood is having the ability to burn. Chemically the wood turns into carbon dioxide when it burns and leaves a residue of ash. Furthermore, this ash residue cannot be turned back into the wood. Chemical changes result in new substances.
Consider an example of a combustion reaction to methane gas:
Our balanced equation for methane combustion implies that every one CH₄ molecule reacts with two O₂ molecules. The product of combustion is one carbon dioxide molecule and two steam or water vapor molecules.