The answer is 3 1/3 + 2 1/3 = 5 2/3
Answer:
Step-by-step explanation:
(x + y)^2 = (x^2 - 2xy + y^2)
First distribute the ^2 on the left side of the equation to each term inside the parenthesis:
x^2+ 2xy + y^2
Now pick one of the variables to solve for and isolate it:
(solving for x)
x^2 + 2xy + y^2 = x^2 - 2xy + y^2
x^2+ 2xy = x^2 - 2xy
2xy = -2xy
-x = x
x = 0
When you solve for y in the equation it will turn out to be 0 as well
Answer:
A), B) and D) are true
Step-by-step explanation:
A) We can prove it as follows:

B) When you compute the product Ax, the i-th component is the matrix of the i-th column of A with x, denote this by Ai x. Then, we have that
. Now, the colums of A are orthonormal so we have that (Ai x)^2=x_i^2. Then
.
C) Consider
. This set is orthogonal because
, but S is not orthonormal because the norm of (0,2) is 2≠1.
D) Let A be an orthogonal matrix in
. Then the columns of A form an orthonormal set. We have that
. To see this, note than the component
of the product
is the dot product of the i-th row of
and the jth row of
. But the i-th row of
is equal to the i-th column of
. If i≠j, this product is equal to 0 (orthogonality) and if i=j this product is equal to 1 (the columns are unit vectors), then
E) Consider S={e_1,0}. S is orthogonal but is not linearly independent, because 0∈S.
In fact, every orthogonal set in R^n without zero vectors is linearly independent. Take a orthogonal set
and suppose that there are coefficients a_i such that
. For any i, take the dot product with u_i in both sides of the equation. All product are zero except u_i·u_i=||u_i||. Then
then
.
Answer:
Step-by-step explanation:
Correct