Answer: A combination 0 degrees Celsius and 101.3 kPa or 1 atm correctly describes standard temperature and pressure.
Explanation:
The term standard temperature and pressure is also known as STP and it is most commonly used when we want to calculate the density of a gas.
The term standard temperature means
Fahrenheit or
or 273 Kelvin. On the other hand, term standard pressure means 1 atmosheric pressure of a gas.
Thus, we can conclude that a combination 0 degrees Celsius and 101.3 kPa or 1 atm correctly describes standard temperature and pressure.
Answer:
Final velocity = 7.677 m/s
KE before crash = 202300 J
KE after crash = 182,702.62 J
Explanation:
We are given;
m1 = 1400 kg
m2 = 4700 kg
u1 = 17 m/s
u2 = 0 m/s
Using formula for inelastic collision, we have;
m1•u1 + m2•u2 = (m1 + m2)v
Where v is final velocity after collision.
Plugging in the relevant values;
(1400 × 17) + (4700 × 0) = (1400 + 1700)v
23800 = 3100v
v = 23800/3100
v = 7.677 m/s
Kinetic energy before crash = ½ × 1400 × 17² = 202300 J
Kinetic energy after crash = ½(1400 + 1700) × 7.677² = 182,702.62 J
Answer:
1170 m
Explanation:
Given:
a = 3.30 m/s²
v₀ = 0 m/s
v = 88.0 m/s
x₀ = 0 m
Find:
x
v² = v₀² + 2a(x - x₀)
(88.0 m/s)² = (0 m/s)² + 2 (3.30 m/s²) (x - 0 m)
x = 1173.33 m
Rounded to 3 sig-figs, the runway must be at least 1170 meters long.
Metals in general, are good heat conductors
If the ration supplementary angle is 11:7,find the measure of the larger angle larger angle?