Represent these consecutive numbers (assuming that they are all integers):
x
x+1
x+2
x+3
x+4
x+5
and so on
x+8
x+9 is the tenth number. x+9 = 10, so x = 9.
Think of it this way: there are 10 consecutive numbers, and the last one is 10.
Working backwards, we get the sequence 10, 9, ... 3, 2, 1.
The sum of such an arith sequence is equal to the count of the numbers times the average of the first and last terms:
sum here = 10(1+10)/2 = 5(11) = 55 (answer)
Answer:

Step-by-step explanation:
<u>Eigenvalues of a Matrix</u>
Given a matrix A, the eigenvalues of A, called
are scalars who comply with the relation:

Where I is the identity matrix
![I=\left[\begin{array}{cc}1&0\\0&1\end{array}\right]](https://tex.z-dn.net/?f=I%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%260%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D)
The matrix is given as
![A=\left[\begin{array}{cc}3&5\\8&0\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%265%5C%5C8%260%5Cend%7Barray%7D%5Cright%5D)
Set up the equation to solve
![det\left(\left[\begin{array}{cc}3&5\\8&0\end{array}\right]-\left[\begin{array}{cc}\lambda&0\\0&\lambda \end{array}\right]\right)=0](https://tex.z-dn.net/?f=det%5Cleft%28%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%265%5C%5C8%260%5Cend%7Barray%7D%5Cright%5D-%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Clambda%260%5C%5C0%26%5Clambda%20%5Cend%7Barray%7D%5Cright%5D%5Cright%29%3D0)
Expanding the determinant
![det\left(\left[\begin{array}{cc}3-\lambda&5\\8&-\lambda\end{array}\right]\right)=0](https://tex.z-dn.net/?f=det%5Cleft%28%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3-%5Clambda%265%5C%5C8%26-%5Clambda%5Cend%7Barray%7D%5Cright%5D%5Cright%29%3D0)

Operating Rearranging

Factoring

Solving, we have the eigenvalues

Answer:
x=148
Linear pairs add up to 180. Take your value of 32 and subtract it from 180 to find out the value of the remaining angle within the linear pair.
180-32=148
Hence, x=148
Hope this helps!
Yep it is greater. Hope this helps