1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vinil7 [7]
2 years ago
13

textRequest reports that adults 18–24 years old send and receive 128 texts every day. Suppose we take a sample of 25–34 year old

s to see if their mean number of daily texts differs from the mean for 18–24 year olds reported by TextRequest.a. State the null and alternative hypotheses we should use to test whether the popu-lation mean daily number of texts for 25–34 year olds differs from the population daily mean number of texts for 18–24 year olds.b. Suppose a sample of thirty 25–34 year olds showed a sample mean of 118.6 texts per day. Assume a population standard deviation of 33.17 texts per day and com-pute the p-value.c. With a = .05 as the level of significance, what is your conclusion? d. Repeat the preceding hypothesis test using the critical value approach.d. Repeat the preceding hypothesis test using the critical value approach.
Mathematics
1 answer:
Butoxors [25]2 years ago
4 0

Testing the hypothesis, we have that:

a)

The null hypothesis is: H_0: \mu = 128

The alternative hypothesis is: H_1: \mu \neq 128

b) The p-value of the test is of 0.1212.

c) Since the <u>p-value of the test is of 0.1212 > 0.05</u>, we cannot conclude that the mean daily number of texts for 25–34 year olds differs from the population daily mean number of texts for 18–24 year olds.

d) Since <u>|z| = 1.55 < 1.96</u>, we cannot conclude that the mean daily number of texts for 25–34 year olds differs from the population daily mean number of texts for 18–24 year olds.

Item a:

At the null hypothesis, we <u>test if the mean is the same</u>, that is, of 128 texts every day, hence:

H_0: \mu = 128

At the alternative hypothesis, we <u>test if the mean is different</u>, that is, different of 128 texts every day, hence:

H_1: \mu \neq 128

Item b:

We have the <u>standard deviation for the population</u>, thus, the z-distribution is used. The test statistic is given by:

z = \frac{\overline{x} - \mu}{\frac{\sigma}{\sqrt{n}}}

The parameters are:

\overline{x} is the sample mean.

\mu is the value tested at the null hypothesis.

\sigma is the standard deviation of the population.

n is the sample size.

For this problem, the values of the parameters are: \overline{x} = 118.6, \mu = 128, \sigma = 33.17, n = 30

Hence, the value of the test statistic is:

z = \frac{\overline{x} - \mu}{\frac{\sigma}{\sqrt{n}}}

z = \frac{118.6 - 128}{\frac{33.17}{\sqrt{30}}}

z = -1.55

Since we have a two-tailed test, as we are testing if the mean is different of a value, the p-value is P(|z| < 1.55), which is 2 multiplied by the p-value of z = -1.55.

Looking at the z-table, z = -1.55 has a p-value of 0.0606

2(0.0606) = 0.1212

The p-value of the test is of 0.1212.

Item c:

Since the <u>p-value of the test is of 0.1212 > 0.05</u>, we cannot conclude that the mean daily number of texts for 25–34 year olds differs from the population daily mean number of texts for 18–24 year olds.

Item d:

Using a z-distribution calculator, the critical value for a <u>two-tailed test</u> with <u>95% confidence level</u> is |z| = 1.96.

Since <u>|z| = 1.55 < 1.96</u>, we cannot conclude that the mean daily number of texts for 25–34 year olds differs from the population daily mean number of texts for 18–24 year olds.

A similar problem is given at brainly.com/question/25369247

You might be interested in
Convert.<br> 1. 2 mi = yard
monitta

Answer:

2112 yards

Step-by-step explanation:

1.2 mi = 2112 yards

4 0
3 years ago
One of the earliest applications of the Poisson distribution was in analyzing incoming calls to a telephone switchboard. Analyst
grandymaker [24]

Answer:

(a) P (X = 0) = 0.0498.

(b) P (X > 5) = 0.084.

(c) P (X = 3) = 0.09.

(d) P (X ≤ 1) = 0.5578

Step-by-step explanation:

Let <em>X</em> = number of telephone calls.

The average number of calls per minute is, <em>λ</em> = 3.0.

The random variable <em>X</em> follows a Poisson distribution with parameter <em>λ</em> = 3.0.

The probability mass function of a Poisson distribution is:

P(X=x)=\frac{e^{-\lambda}\lambda^{x}}{x!};\ x=0,1,2,3...

(a)

Compute the probability of <em>X</em> = 0 as follows:

P(X=0)=\frac{e^{-3}3^{0}}{0!}=\frac{0.0498\times1}{1}=0.0498

Thus, the  probability that there will be no calls during a one-minute interval is 0.0498.

(b)

If the operator is unable to handle the calls in any given minute, then this implies that the operator receives more than 5 calls in a minute.

Compute the probability of <em>X</em> > 5  as follows:

P (X > 5) = 1 - P (X ≤ 5)

              =1-\sum\limits^{5}_{x=0} { \frac{e^{-3}3^{x}}{x!}} \,\\=1-(0.0498+0.1494+0.2240+0.2240+0.1680+0.1008)\\=1-0.9160\\=0.084

Thus, the probability that the operator will be unable to handle the calls in any one-minute period is 0.084.

(c)

The average number of calls in two minutes is, 2 × 3 = 6.

Compute the value of <em>X</em> = 3 as follows:

<em> </em>P(X=3)=\frac{e^{-6}6^{3}}{3!}=\frac{0.0025\times216}{6}=0.09<em />

Thus, the probability that exactly three calls will arrive in a two-minute interval is 0.09.

(d)

The average number of calls in 30 seconds is, 3 ÷ 2 = 1.5.

Compute the probability of <em>X</em> ≤ 1 as follows:

P (X ≤ 1 ) = P (X = 0) + P (X = 1)

             =\frac{e^{-1.5}1.5^{0}}{0!}+\frac{e^{-1.5}1.5^{1}}{1!}\\=0.2231+0.3347\\=0.5578

Thus, the probability that one or fewer calls will arrive in a 30-second interval is 0.5578.

5 0
3 years ago
15 Points!<br> Find the range of the functions:<br><br> f(x) = (x + 1)^2 - 1<br><br> f(x) = 7x - 11
MakcuM [25]

In both cases you may well benefit from graphing the functions.

Do you recognize f(x) = (x + 1)^2 - 1 as a quadratic function, whose graph is that of a parabola that opens up? By comparing this to y = a(x-h)^2 + k, we see that a=1, h= -1 and k = -1. The vertex is at (h,k), which here is the point (-1, -1). This is the minimum value of the function. Thus, the range of this function is [-1, infinity).


Now for the function f(x) = 7x - 11: This is a linear function whose graph is (surprise!) a straight line. When x increases, y increases, without limits to either. Similarly, when x decreases, y decreases.

Thus the range includes all real numbers: (-infinity, infinity).

4 0
3 years ago
5. A cabin rental costs $100 deposit plus $75 per day. Find the cost of renting a cabin for the
Alik [6]

Answer:

the answer to this question is $2,350

Step-by-step explanation:

june has 30 days so $75 × 30 + $100 = $2,350

6 0
3 years ago
Open notes test: Relations, Functions and Slope
Karolina [17]

Answer:

I'm not sure what your asking

6 0
3 years ago
Other questions:
  • The manufacturer of an airport baggage scanning machine claims it can handle an average of 560 bags per hour. (a-1) At α = .05 i
    15·1 answer
  • 6. Leon says he can find the sum of 30 + 67 without
    7·2 answers
  • A Mallard duck flies 5/6 of a mile in 1/60 of a hour. Compute the unit rate by setting up a complex fraction and simplifying.
    5·1 answer
  • Lisa cuts 3 grapefruit half has 8 segments.Write an expression that uses parentheses to group two factors.Solve. How many grapef
    5·1 answer
  • PLEASE HELPPP !!!!!!!!
    11·1 answer
  • Which of the following mixtures will have a stronger coffee flavor? explain please thank you!!
    12·1 answer
  • HELP ME PLEASE BRAINLIEST ANSWER
    10·1 answer
  • Write the product using exponents <br> (−6)⋅(−6)
    12·2 answers
  • Find two positive numbers whose difference is 30 and whose product is 2584.
    5·2 answers
  • The area of a rectangle is Aww (1) What is the area of a rectangle that has a width of 34 and a length of 10
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!