Given the model from the question,
- The products are: N₂, H₂O and H₂
- The reactants are: H₂ and NO
- The limiting reactant is H₂
- The balanced equation is: 3H₂ + 2NO —> N₂ + 2H₂O + H₂
<h3>Balanced equation </h3>
From the model given, we obtained the ffolowing
- Red => Oxygen
- Blue => Nitrogen
- White => Hydrogen
Thus, we can write the balanced equation as follow:
3H₂ + 2NO —> N₂ + 2H₂O + H₂
From the balanced equation above,
- Reactants: H₂ and NO
- Product: N₂, H₂O and H₂
<h3>How to determine the limiting reactant</h3>
3H₂ + 2NO —> N₂ + 2H₂O + H₂
From the balanced equation above,
3 moles of H₂ reacted with 2 moles of NO.
Therefore,
5 moles of H₂ will react with = (5 × 2) / 3 = 3.33 moles of NO
From the calculation made above, we can see that only 3.33 moles of NO out of 4 moles given are required to react completely with 5 moles of H₂.
Thus, H₂ is the limiting reactant
Learn more about stoichiometry:
brainly.com/question/14735801
#SPJ1
Answer:
0.924 g
Explanation:
The following data were obtained from the question:
Volume of CO2 at RTP = 0.50 dm³
Mass of CO2 =?
Next, we shall determine the number of mole of CO2 that occupied 0.50 dm³ at RTP (room temperature and pressure). This can be obtained as follow:
1 mole of gas = 24 dm³ at RTP
Thus,
1 mole of CO2 occupies 24 dm³ at RTP.
Therefore, Xmol of CO2 will occupy 0.50 dm³ at RTP i.e
Xmol of CO2 = 0.5 /24
Xmol of CO2 = 0.021 mole
Thus, 0.021 mole of CO2 occupied 0.5 dm³ at RTP.
Finally, we shall determine the mass of CO2 as follow:
Mole of CO2 = 0.021 mole
Molar mass of CO2 = 12 + (2×16) = 13 + 32 = 44 g/mol
Mass of CO2 =?
Mole = mass /Molar mass
0.021 = mass of CO2 /44
Cross multiply
Mass of CO2 = 0.021 × 44
Mass of CO2 = 0.924 g.
Answer:
The correct option is;
The electronegativity increases
Explanation:
The electronegativity is the measure of an atom's ability to attract a shared electron pair. The electronegativity of an atom is dependent on the atom's atomic number and the separation distance between the electrons in the valence shell and the positively charged nucleus such that an increase in the atomic number results in an increase in electronegativity and an increase in the distance between the valence electrons and the nucleus, leads to a decrease in electronegativity.
Answer:
<h2>The answer is 334 g</h2>
Explanation:
The mass of a substance when given the density and volume can be found by using the formula
<h3>mass = Density × volume</h3>
From the question
volume of ethanol = 423 cm³
density = 0.789 g/cm³
So we have
mass = 0.789 × 423 = 333.747
We have the final answer as
<h3>334 g</h3>
Hope this helps you