The solution to the equation r(1 - 2cosФ) = 1 is given as x² + y² - 4x√(x² + y²) + 4x² = 1
<h3>What is an
equation?</h3>
An equation is an expression that shows the relationship between two or more variables and numbers.
In polar form:
r = √(x² + y²) and cosФ = x / √(x² + y²)
Hence:
r(1 - 2cosФ) = 1
√(x² + y²) [1 - 2(x / √(x² + y²))] = 1
√(x² + y²) - 2x = 1
Take square of both sides:
x² + y² - 4x√(x² + y²) + 4x² = 1
The solution to the equation r(1 - 2cosФ) = 1 is given as x² + y² - 4x√(x² + y²) + 4x² = 1
Find out more on equation at: brainly.com/question/2972832
#SPJ1
The answer would be:
6x - 7
I hope this helped you,
Have a great day
To solve this we are going to use the future value of annuity due formula:
![FV=(1+ \frac{r}{n} )*P[ \frac{(1+ \frac{r}{n})^{kt}-1 }{ \frac{r}{n} } ]](https://tex.z-dn.net/?f=FV%3D%281%2B%20%5Cfrac%7Br%7D%7Bn%7D%20%29%2AP%5B%20%5Cfrac%7B%281%2B%20%5Cfrac%7Br%7D%7Bn%7D%29%5E%7Bkt%7D-1%20%7D%7B%20%5Cfrac%7Br%7D%7Bn%7D%20%7D%20%5D)
where

is the future value

is the periodic deposit

is the interest rate in decimal form

is the number of times the interest is compounded per year

is the number of deposits per year
We know for our problem that

and

. To convert the interest rate to decimal form, we are going to divide the rate by 100%:

. Since Ruben makes the deposits every 6 months,

. The interest is compounded semiannually, so 2 times per year; therefore,

.
Lets replace the values in our formula:
![FV=(1+ \frac{r}{n} )*P[ \frac{(1+ \frac{r}{n})^{kt}-1 }{ \frac{r}{n} } ]](https://tex.z-dn.net/?f=FV%3D%281%2B%20%5Cfrac%7Br%7D%7Bn%7D%20%29%2AP%5B%20%5Cfrac%7B%281%2B%20%5Cfrac%7Br%7D%7Bn%7D%29%5E%7Bkt%7D-1%20%7D%7B%20%5Cfrac%7Br%7D%7Bn%7D%20%7D%20%5D)
![FV=(1+ \frac{0.1}{2} )*420[ \frac{(1+ \frac{0.1}{2})^{(2)(15)}-1 }{ \frac{01}{2} } ]](https://tex.z-dn.net/?f=FV%3D%281%2B%20%5Cfrac%7B0.1%7D%7B2%7D%20%29%2A420%5B%20%5Cfrac%7B%281%2B%20%5Cfrac%7B0.1%7D%7B2%7D%29%5E%7B%282%29%2815%29%7D-1%20%7D%7B%20%5Cfrac%7B01%7D%7B2%7D%20%7D%20%5D)
We can conclude that the correct answer is <span>
$29,299.53</span>