The system of the equation doesn't give the solution at (-3, -6).
<h2>Given to us</h2>
<h3>Equation 1,</h3>
-4x+y = 6
solve for y

<h3>Equation 2,</h3>
5x-y =21
substitute the value of y in equation 2,

Substitute the value of x in equation 2,

We can see that the solution of the two equations is at (27, 114). Also, it can be verified by plotting the line on the graph.
Hence, the system of the equation doesn't give the solution at (-3, -6).
Learn more about system of equations:
brainly.com/question/12895249
Distribute to 5p + 15 + 9 = 3p - 6 + 6
Then .. 5p + 24 = 3p
24 = -2p
-12 = p
Answer:
The mean birth weight for the sampling distribution is
3,500 grams.
Step-by-step explanation:
The sample mean is the average of the sample values collected divided by the number of the samples, while the population mean is the average or mean of all the values in the population. If the sample is random and the sample size is large enough, then the sample mean would be a good estimator of the population mean. This implies that with a randomly distributed and unbiased sample size, the sample mean and population mean will be equal, according to the central limit theorem. Therefore, the mean of the sample means will always approximate the population mean.
This would be in terms of dividing the largest number (being 13) by the percentage in decimal form.
The percentage worked where you take that and divide by 100 to get your percentage, meaning:
13/2 = 6.5 | 13 is 200% of 6.5. Because if you double it you get 13 which is how 200% works.
I hope this helps, have a great rest of your day! ^ ^
| | Ghostgate | |
We want to find the values of a, b, c, and d such that the given matrix product is equal to a 2x2 identity matrix. We will solve a system of equations to find:
<h3>
Presenting the equation:</h3>
Basically, we want to solve:
![\left[\begin{array}{cc}-1&2\\a&1\end{array}\right]*\left[\begin{array}{cc}b&c\\1&d\end{array}\right] = \left[\begin{array}{cc}1&0\\0&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-1%262%5C%5Ca%261%5Cend%7Barray%7D%5Cright%5D%2A%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Db%26c%5C%5C1%26d%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%260%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D)
The matrix product will be:
![\left[\begin{array}{cc}-b + 2&-c + 2d\\a*b + 1&a*c + d\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-b%20%2B%202%26-c%20%2B%202d%5C%5Ca%2Ab%20%2B%201%26a%2Ac%20%2B%20d%5Cend%7Barray%7D%5Cright%5D)
Then we must have:
-b + 2 = 1
This means that:
b = 2 - 1 = 1
We also need to have:
a*b + 1 = 0
we know the value of b, so we just have:
a*1 + b = 0
Now the two remaining equations are:
-c + 2d = 0
a*c + d = 1
Replacing the value of a we get:
-c + 2d = 0
-c + d = 1
Isolating c in the first equation we get:
c = 2d
Replacing that in the other equation we get:
-(2d) + d = 1
-d = 1
Then:
c = 2d = 2*(-1) = -2
So the values are:
If you want to learn more about systems of equations, you can read:
brainly.com/question/13729904