1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
TiliK225 [7]
2 years ago
11

What does silver 505.

Chemistry
1 answer:
Solnce55 [7]2 years ago
3 0

Answer: Can you write the question more fully?? I can help.

You might be interested in
Consider the formation of ammonia in two experiments. (a) to a 1.00-l container at 727°c, 1.30 mol of n2 and 1.65 mol of h2 are
emmasim [6.3K]
When it comes to equilibrium reactions, it useful to do ICE analysis. ICE stands for Initial-Change-Equilibrium. You subtract the initial and change to determine the equilibrium amounts which is the basis for Kc. Kc is the equilibrium constant of concentration which is just the ratio of products to reactant. 

Let's do the ICE analysis

      2 NH₃ ⇄ N₂ + 3 H₂
I         0        1.3    1.65
C     +2x       -x      -3x
-------------------------------------
E       0.1        ?        ?

The variable x is the amount of moles of the substances that reacted. You apply the stoichiometric coefficients by multiplying it by x. Now, we can solve x by:

Equilibrium NH₃ = 0.1 = 0 + 2x
x = 0.05 mol
Therefore,
Equilibrium H₂ = 1.65 - 3(0.05) = 1.5 mol
Equilibrium N₂ = 1..3 - 0.05 = 1.25 mol

For the second part, I am confused with the given reaction because the stoichiometric coefficients do not balance which violates the law of conservation of mass. But you should remember that the Kc values might differ because of the stoichiometric coefficient. For a reaction: aA + bB ⇄ cC, the Kc for this is

K_{C} = \frac{[ C^{c} ]}{[ A^{a} ][ B^{b} ]}

Hence, Kc could vary depending on the stoichiometric coefficients of the reaction.
8 0
3 years ago
A 0.229-g sample of an unknown monoprotic acid is titrated with 0.112 m naoh. the resulting titration curve is shown here. part
Kazeer [188]
It would be 0.341 because if you add 0.229 and 0.112 it will be 0.341
4 0
4 years ago
Why is cl2 a subcript​
vazorg [7]

Answer:

In Cl_2, the 2 is a subscript because it indicates there are 2 of the same elements. The Lewis structure would display it as Cl-Cl.

On the other hand, a superscript would indicate a specific charge.

All subscripts show the amount of the specific element there is.

An example would be O_2\\ or N_2, they both show that there are 2 of the same elements.

If the subscript is outside a parenthesis such as Ca_3(PO_4)_2 it indicates there are 2 PO_4 molecules.

5 0
3 years ago
I need HELP!!!<br><br> Do the benefits of nuclear power outweigh the risks?
Georgia [21]
While there is no such thing as 100 percent safe, having nuclear energy is much safer than you think. It's thousands of times safer than conventional coal and other fossil-fuel-derived energy, not to mention the specter of environmental disaster from continued use of carbon-based energy sources.
3 0
3 years ago
g 2BrO3- + 5SnO22-+ H2O5SnO32- + Br2+ 2OH- In the above reaction, the oxidation state of tin changes from to . How many electron
Archy [21]

Answer:

In the above reaction, the oxidation state of tin changes from 2+ to 4+.

10 moles of electrons are transferred in the reaction

Explanation:

Redox reaction is:

2BrO₃⁻ + 5SnO₂²⁻ + H2O ⇄ 5SnO₃²⁻ + Br₂ + 2OH⁻

SnO₂²⁻ → SnO₃²⁻

Tin changes the oxidation state from +2 to +4. It has increased it so this is the oxidation from the redox (it released 2 e⁻). We are in basic medium, so we add water in the side of the reaction where we have the highest amount of oxygen. We have 2 O on left side and 3 O on right side so we add 1 water on the right and we complete with OH⁻ in the opposite side to balance the H.  

SnO₂²⁻ + 2OH⁻ → SnO₃²⁻ + 2e⁻ + H₂O <u>Oxidation</u>

BrO₃⁻ →  Br₂

First of all, we have unbalance the bromine, so we add 2 on the BrO₃⁻. We have 6 O in left side and there are no O on the right, so we add 6 H₂O on the left. To balance the H, we must complete with 12OH⁻. Bromate reduces to bromine at ground state, so it gained 5e⁻. We have 2 atoms of Br, so finally it gaines 10 e⁻.

6H₂O + 10 e⁻ + 2BrO₃⁻ →  Br₂ + 12OH⁻ <u>Reduction</u>

In order to balance the main reaction and balance the electrons we multiply  (x5) the oxidation and (x1) the reduciton

(SnO₂²⁻ + 2OH⁻ → SnO₃²⁻ + 2e⁻ + H₂O) . 5

(6H₂O + 10 e⁻ + 2BrO₃⁻ →  Br₂ + 12OH⁻) . 1

5SnO₂²⁻ + 10OH⁻ + 6H₂O + 10 e⁻ + 2BrO₃⁻ → Br₂ + 12OH⁻ + 5SnO₃²⁻ + 10e⁻ + 5H₂O

We can cancel the e⁻ and we substract:

12OH⁻ - 10OH⁻ = 2OH⁻ (on the right side)

6H₂O - 5H₂O = H₂O (on the left side)

2BrO₃⁻ + 5SnO₂²⁻ + H2O ⇄ 5SnO₃²⁻ + Br₂ + 2OH⁻

6 0
4 years ago
Other questions:
  • Which of the following ions came from an atom that lost two electrons
    10·1 answer
  • Is crushing a rock a chemical or physical change?
    7·1 answer
  • If a solid has a density greater than 1 g/ml will it sink or float?
    11·1 answer
  • What is the very small center core of an atom is called?
    7·2 answers
  • The existence of discrete (quantized) energy levels in an atom may be inferred from
    13·1 answer
  • Which of the following is a reactant in photosynthesis?
    7·1 answer
  • Would an element with 7 valence electrons be more or less reactive than an element with 3 valence electrons?
    11·1 answer
  • What kind of chemical bond is established in hydrochloric acid?​
    7·2 answers
  • A student hits a nail with a hammer. During the collision, there is _____.
    6·1 answer
  • (a) Which region of Earth’s crust is not involved in the phosphorus cycle?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!