Answer:
This represents radiation in ultra-violet region .
Explanation:
Energy of the orbit where n = 3 is given as follows

= -1.511 eV
Energy of the orbit where n = 1 is given as follows

= 13.6 eV
Difference of [tex]E_3 and [tex]E_1 = - 1.511+ 13.6
= 12.089 eV.
The wavelength of light having this energy in nm is given by the expression as follows
Wavelength in nm = 1244 / energy in eV
= 1244 / 12.089
= 102.90 nm
This represents radiation in ultra-violet region .
Answer:
191.36 N/m
Explanation:
From the question,
The Potential Energy of the safe = Energy of the spring when it was compressed.
mgh = 1/2ke²............... Equation 1
Where m = mass of the safe, g = acceleration due to gravity, h = height of the save above the heavy duty spring , k = spring constant, e = compression
Making k the subject of the equation,
k =2mgh/e²................ Equation 2
Given: m = 1100 kg, h = 2.4 mm = 0.0024 m, e = 0.52 m
Constant: g = 9.8 m/s²
Substitute into equation 2
k = 2(1100)(9.8)(0.0024)/0.52²
k = 51.744/0.2704
k = 191.36 N/m
Hence the spring constant of the heavy-duty spring = 191.36 N/m
Given the particle's acceleration is

with initial velocity

and starting at the origin, so that

you can compute the velocity and position functions by applying the fundamental theorem of calculus:


We have
• velocity at time <em>t</em> :

• position at time <em>t</em> :

Answer:
The answer to your question is:
a) t = 3.81 s
b) vf = 37.4 m/s
Explanation:
Data
height = 71.3 m = 234 feet
t = 0 m/s
vf = ?
vo = 0 m/s
Formula
h = vot + 1/2gt²
vf = vo + gt
Process
a)
h = vot + 1/2gt²
71.3 = 0t + 1/2(9.81)t²
2(71.3) = 9,81t²
t² = 2(71.3)/9.81
t² = 14.53
t = 3.81 s
b)
vf = 0 + (9.81)(3.81)
vf = 37.4 m/s