1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
forsale [732]
2 years ago
14

Calculate the velocity of a car that travelled 120km in 2 hours​

Physics
1 answer:
Naddik [55]2 years ago
5 0
I need context poggg
You might be interested in
Bill and Janet are pulling on opposite sides of a table. Bill pulls with a force of 250 N to the left, and Janet pulls with a fo
Dafna1 [17]

Answer: 75 N to the right

Explanation:

5 0
2 years ago
An 80- quarterback jumps straight up in the air right before throwing a 0.43- football horizontally at 15 . How fast will he be
lord [1]

Answer:

a)

the quarterback will be moving back at speed of 0.080625 m/s

b)

the distance moved horizontally by the quarterback is 0.0241875 m or 2.41875 cm

Explanation:

Given the data in the question;

a)

How fast will he be moving backward just after releasing the ball?

using conservation of momentum;

m₁v₁ = m₂v₂

v₂ = m₁v₁ / m₂

where m₁ is initial mass ( 0.43 kg )

m₂ is the final mass ( 80 kg )

v₁ is the initial velocity  ( 15 m/s )

v₂ is the final velocity

so we substitute

v₂ = ( 0.43 × 15 ) / 80

v₂ = 6.45 / 80

v₂ = 0.080625 m/s

Therefore, the quarterback will be moving back at speed of 0.080625 m/s

b) Suppose that the quarterback takes 0.30 to return to the ground after throwing the ball. How far d will he move horizontally, assuming his speed is constant?

we make use of the relation between time, distance and speed;

s = d/t

d = st

where s is the speed ( 0.080625 m/s )

t is time ( 0.30 s )

so we substitute

d = 0.080625 × 0.30

d = 0.0241875 m or 2.41875 cm

Therefore, the distance moved horizontally by the quarterback is 0.0241875 m or 2.41875 cm

5 0
3 years ago
Exercises
Crank

\\ \rm\Rrightarrow \dfrac{1}{u}+\dfrac{1}{v}=\dfrac{1}{f}

\\ \rm\Rrightarrow \dfrac{1}{u}=\dfrac{1}{-10}+\dfrac{1}{38}

\\ \rm\Rrightarrow \dfrac{1}{u}=\dfrac{-19+5}{190}

\\ \rm\Rrightarrow \dfrac{1}{u}=\dfrac{-14}{190}

\\ \rm\Rrightarrow u=\dfrac{190}{-14}

\\ \rm\Rrightarrow u=13.6cm

Real

5 0
2 years ago
According to universal gravitation, both mass and air resistance affect the gravitational attraction between objects
Ksju [112]
Air resistance doesn't appear in the formula for gravitational force, because it doesn't affect it. Mass does because it does.
7 0
2 years ago
Read 2 more answers
An electron is placed on a line connecting two fixed point charges of equal charge but the opposite sign. The distance between t
viktelen [127]

Answer:

a)    F_net = 6.48 10⁻¹⁸ ( \frac{1}{x^2} + \frac{1}{(0.300-x)^2} ),   b) x = 0.15 m

Explanation:

a) In this problem we use that the electric force is a vector, that charges of different signs attract and charges of the same sign repel.

The electric force is given by Coulomb's law

         F =k \frac{q_2q_2}{r^2}

         

Since when we have the two negative charges they repel each other and when we fear one negative and the other positive attract each other, the forces point towards the same side, which is why they must be added.

          F_net= ∑ F = F₁ + F₂

let's locate a reference system in the load that is on the left side, the distances are

left side - electron       r₁ = x

right side -electron     r₂ = d-x

let's call the charge of the electron (q) and the fixed charge that has equal magnitude Q

we substitute

          F_net = k q Q  ( \frac{1}{r_1^2}+ \frac{1}{r_2^2})

          F _net = kqQ  ( \frac{1}{x^2} + \frac{1}{(d-x)^2} )

         

let's substitute the values

          F_net = 9 10⁹  1.6 10⁻¹⁹ 4.50 10⁻⁹ ( \frac{1}{x^2} + \frac{1}{(0.30-x)^2} )

          F_net = 6.48 10⁻¹⁸ ( \frac{1}{x^2} + \frac{1}{(0.300-x)^2} )

now we can substitute the value of x from 0.05 m to 0.25 m, the easiest way to do this is in a spreadsheet, in the table the values ​​of the distance (x) and the net force are given

x (m)        F (N)

0.05        27.0 10-16

0.10          8.10 10-16

0.15          5.76 10-16

0.20         8.10 10-16

0.25        27.0 10-16

b) in the adjoint we can see a graph of the force against the distance, it can be seen that it has the shape of a parabola with a minimum close to x = 0.15 m

4 0
3 years ago
Other questions:
  • Will an electric charge spread over an entire balloon? explain
    12·1 answer
  • Suppose the Opera station broadcasts at 90.5MHz and the Rock and Roll station broadcasts at 107.1MHz. 1. Which station's signal
    12·1 answer
  • Surface currents are driven by _____.<br> wind<br> density<br> salinity<br> temperature
    5·2 answers
  • If a diver below the water's surface shines a light up at the bottom of the oil film, at what wavelength (as measured in water)
    13·1 answer
  • A proton and an electron are released from rest, with only the electrostatic force acting. Which of the following statements mus
    10·1 answer
  • A 1.0 kg toy car is released at the top of a frictionless track on the left and rolls off of the track from its right
    6·2 answers
  • Drag the tiles to the correct boxes to complete the pairs. Not all tiles will be used. Match the reactants with the products.
    13·1 answer
  • What are the symptoms of hepatitis 'b'​
    6·1 answer
  • A 2.00 kg rock is dropped from the top of a 30.0 m high building. Calculate the ball’s momentum at the time that it strikes the
    10·1 answer
  • 5. Which statement about the acceleration of an object is corr
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!