1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
attashe74 [19]
2 years ago
11

Find the area of the shaded region

Mathematics
1 answer:
Mrac [35]2 years ago
4 0

Answer:

40.5

Step-by-step explanation:

Area of square is 9x9=81.

Area of triangle is 1/2(9)(9)=40.5

81-40.5=40.5

40.5 is the area of the shaded region.

You might be interested in
<img src="https://tex.z-dn.net/?f=%20%20%5Csf%20%5Chuge%7B%20question%20%5Chookleftarrow%7D" id="TexFormula1" title=" \sf \huge
BabaBlast [244]

\underline{\bf{Given \:equation:-}}

\\ \sf{:}\dashrightarrow ax^2+by+c=0

\sf Let\:roots\;of\:the\: equation\:be\:\alpha\:and\beta.

\sf We\:know,

\boxed{\sf sum\:of\:roots=\alpha+\beta=\dfrac{-b}{a}}

\boxed{\sf Product\:of\:roots=\alpha\beta=\dfrac{c}{a}}

\underline{\large{\bf Identities\:used:-}}

\boxed{\sf (a+b)^2=a^2+2ab+b^2}

\boxed{\sf (√a)^2=a}

\boxed{\sf \sqrt{a}\sqrt{b}=\sqrt{ab}}

\boxed{\sf \sqrt{\sqrt{a}}=a}

\underline{\bf Final\: Solution:-}

\\ \sf{:}\dashrightarrow \sqrt{\alpha}+\sqrt{\beta}

\bull\sf Apply\: Squares

\\ \sf{:}\dashrightarrow (\sqrt{\alpha}+\sqrt{\beta})^2= (\sqrt{\alpha})^2+2\sqrt{\alpha}\sqrt{\beta}+(\sqrt{\beta})^2

\\ \sf{:}\dashrightarrow (\sqrt{\alpha}+\sqrt{\beta})^2 \alpha+\beta+2\sqrt{\alpha\beta}

\bull\sf Put\:values

\\ \sf{:}\dashrightarrow (\sqrt{\alpha}+\sqrt{\beta})^2=\dfrac{-b}{a}+2\sqrt{\dfrac{c}{a}}

\\ \sf{:}\dashrightarrow \sqrt{\alpha}+\sqrt{\beta}=\sqrt{\dfrac{-b}{a}+2\sqrt{\dfrac{c}{a}}}

\bull\sf Simplify

\\ \sf{:}\dashrightarrow \underline{\boxed{\bf {\sqrt{\boldsymbol{\alpha}}+\sqrt{\boldsymbol{\beta}}=\sqrt{\dfrac{-b}{a}}+\sqrt{2}\dfrac{c}{a}}}}

\underline{\bf More\: simplification:-}

\\ \sf{:}\dashrightarrow \sqrt{\alpha}+\sqrt{\beta}=\dfrac{\sqrt{-b}}{\sqrt{a}}+\dfrac{c\sqrt{2}}{a}

\\ \sf{:}\dashrightarrow \sqrt{\alpha}+\sqrt{\beta}=\dfrac{\sqrt{a}\sqrt{-b}+c\sqrt{2}}{a}

\underline{\Large{\bf Simplified\: Answer:-}}

\\ \sf{:}\dashrightarrow\underline{\boxed{\bf{ \sqrt{\boldsymbol{\alpha}}+\sqrt{\boldsymbol{\beta}}=\dfrac{\sqrt{-ab}+c\sqrt{2}}{a}}}}

5 0
2 years ago
Read 2 more answers
The vertex of the graph of f(x) = |x – 3| + 6 is located at ( , ).
pashok25 [27]

The vertex would be at (3, 6).

4 0
3 years ago
Is RATIONAL , IRRATIONAL,NON REAL NUMBERS <br><img src="https://tex.z-dn.net/?f=%20%5Csqrt%7B27" id="TexFormula1" title=" \sqrt{
Tanya [424]

Answer:

It's irrational

Step-by-step explanation:

the square root of 27 is equal to:

\sqrt{27} = \sqrt{3\cdot3\cdot3} = 3\sqrt{3}

We know that \sqrt{3} is an irrational number (but a real number), so 3\sqrt{3} is the same.

In case we need to prove that \sqrt{3} is irrational, please leave a comment.

8 0
3 years ago
Read 2 more answers
Please I need this ASAP so can someone helpppppp
iris [78.8K]
AC = 8.9
BC = 6.5
(90% angle)
8.9 x 6.5 = <span>57.85
57.85/2 = 28.925
Area of ^ABC =  28.925 cm squared

DE = 55.1
55.1/ 11.02 = 5
DEF is 5 times as big as ABC
DF = 44.5
FE = 32.5
44.5 x 32.5 = 1446.25
1446.25/2 = 723.125
I am not positive but I believe DEF = 723.125 cm squared
Good Luck on the Test!! :D

</span>
7 0
3 years ago
Pls help, i need help i dont understand
Svet_ta [14]

Answer:

I think it's 140 not sure

5 0
2 years ago
Other questions:
  • Please help :)
    10·2 answers
  • Help me on this problem
    11·1 answer
  • 3/5 of the class were boys. The teacher divided the boys equally into groups so the each group of boys had 1/10 of the number of
    11·1 answer
  • Next
    7·1 answer
  • Can someone help me with this math homework please!
    10·1 answer
  • Help plssssssssssssssssss
    7·1 answer
  • B(10,15) B´(4,6) Which type of transformation is that?​
    11·1 answer
  • How can i solve the following<br> 2(x + 3) = x - 4
    7·2 answers
  • Write an equation for the line above
    6·1 answer
  • Find m∠U.<br> Write your answer as an integer or as a decimal rounded to the nearest tenth.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!